Course Description
Welcome to the wonderful world of science! In this year-long course, students will learn about natural phenomena through readings, posters, models, puzzles, and labs. Concepts are emphasized, and students are introduced to the scientific method of inquiry.

Primary Textbook and Required Materials
2. Pencil, eraser, loose-leaf paper and graphing paper, folder or binder, and stapler.
4. Calculator

Objectives
- Science is the study of the natural world as well as a method of thinking.
- Understanding leads to appreciation.
- Concepts are emphasized.
- Understand how to apply math. Did you know calculus and physics were developed concurrently?
- Always wonder “why?” and try to find the answer. Could you derive the formulas from big ideas instead of memorizing them? How could you apply science?
- Intuition is a key.
- Enjoy!

Standards
The learning objectives for this course are based on the Science Content Standards for California Public Schools.

- Explore and analyze the world using scientific methods.
- Recognize how science and technology are related and how they affect humans and the environment.
- Understand the properties of matter, motion and forces, and conservation of energy.
- Understand the atom, the arrangement of elements in the periodic table, and chemical reactions.
- Understand sound and light waves.
- Understand the fundamentals of electromagnetism and how they are used in our daily lives.

Classroom Behavior Expectations
Failure to comply with the policies may result in parent conferences and/or Administrative referral. Please refer to the Student Handbook for existing guidelines.

1. Be prepared at the bell. Stationary, books, calculator, and homework should be out and ready.
2. Remain in your assigned seat and stay on task.
3. No laptops, cell phones, or another course’s material during class.
4. Raise your hand before speaking.
5. Speak English.
6. Respectfully listen while others are speaking. Be courteous to classmates, faculty and staff at all times.
7. Restrooms are to be used before and after class. If a student needs to leave class, he/she must have a hall pass.
8. Stay in the classroom during breaks.
9. Keep your work area neat and tidy. Pack up your books and stationery, remove eraser crumbs from the tabletops, and push your chair in before leaving your desk.
11. Clean up your lab station before leaving.

Course Requirements
1. Preview vocabulary for each chapter.
2. Before starting an experiment, complete a pre-lab including your question, hypothesis, procedure, and chart set-up for data collection.
3. Students are expected to take notes during class, review notes at home, and read the textbook.
4. Keep an agenda book recording assignment due dates, listed on the board and class website.
5. In case of absence, students are responsible for checking the class website for announcements and new assignments, as well as reviewing a classmate’s lecture notes. Missing work must be turned in within one week of the student’s return.
6. Homework should be turned in on time, at the start of class. Late work will not be accepted or will be penalized.
7. Students whose grades fall below C- or who repeatedly miss homework assignments will be asked to come for extra help at least once per week in the afterschool Advisory Period (3:10~4:10).
8. Academic honesty is expected of all students. Homework must be completed independently.

Grading (Category percents are subject to change.)

Homework 25%
- Projects, posters, and presentations may count as 2 to 3 homework grades.
- Due at the start of class. Late work receives a 70% penalty and must be completed within a week.
- Completeness and neatness are graded, not just the correct answer. When asked to “explain” or “describe”, please do not give one-word answers. Explain concepts clearly, showing formulas or diagrams when necessary.
- Include SI units.
- One lowest homework grade will be dropped at the end of the semester.

Class Work 10%
Labs 25%
Tests 20%
- Tests cover 1~2 chapters. Calculators may not be shared.

Final Exam 10% (Semester 2)
Class Participation 10%
- Textbook problems are checked for completion at the start of each class.
- This score will be affected by noncompliance with classroom behavior expectations, such as
arriving to class late or unprepared, sleeping during or disrupting the lesson.

Science Fair 10% (Semester 1)

- Students will download a handout with due dates for several assignments that will help them prepare for the science fair.

Bonus Points - available on homework and exams

Course Outline

I. Introduction to Matter: Chapters 1~4 (5 weeks)
II. Forces and Motion: Chapters 5~7 (7 weeks)
III. Work, Machines, and Energy: Chapters 8~10 (5 weeks)
IV. Atom: Chapters 11~12 (2 weeks)
V. Introduction to Chemistry: Chapters 13~16 (6 weeks)
VI. Electromagnetism: Chapters 17~19 (6 weeks)
VII. Waves: Chapters 20~23 (4 weeks)
Lab Report Format

1. Include your name and the names of your partners.

2. Title

3. Objective/Question – What is the goal of this lab? This should be clear and concise.

4. Hypothesis – Make an educated guess to answer your question. Include background information with cited references.

5. Independent, Dependent, and Controlled Variables –
 a. Independent variables are manipulated, input conditions that affect the outcome of your experiment.
 b. Dependent variables are responding, output conditions that you measure.
 c. Controlled variables are other factors that could affect your measurements. You need to control them so that your data is not biased.

6. Procedure – Provide step-by-step instructions on how you conducted your experiment so that others can replicate your results. Labeled diagrams and pictures should be included.

7. Data – Measurements should be recorded neatly in tables, charts, and graphs. Be sure to indicate SI units.

8. Analysis – This is a very important part of the lab report.
 - Explain your observations using scientific principles. If calculations are included, clearly show what formulas you are using and references if necessary. Do your results support your hypothesis? Why or why not?
 - Were there any errors? How could you improve your procedure to prevent them next time?

9. Conclusion – Briefly summarize the lab’s goal and how your results support or contradict your hypothesis. How could your results benefit society? What further research could be done on the topic?

ACKNOWLEDGMENT – 7th Grade Physical Science

Print Student Name: ____________________________ Date ________

Please confirm that you have access to http://powerschool.pacificamerican.org/ and www.oz.nthu.edu.tw/~g9561701. Your signature below verifies that you understand the expectations for this course.

Thank you for your cooperation and time.

Ms. Liu

Parent/Guardian Signature: ____________________________ Student Signature: ____________________________