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QR Decomposition

Given a matrix A ∈ Cm×n, we can have the following

decomposition

A = QR

where Q ∈ Cm×m is unitary, and R ∈ Cm×n is upper

triangular.

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University 2



COM521500 Math. Methods for Signal Processing I Lecture 9: QR Decomposition

Classical Gram-Schmidt

For simplicity, assume for the time being that A has full

column rank.

Set

q1 = a1/‖a1‖2, r11 = ‖a1‖2

Consider finding q2. Since

a2 = r12q1 + r22q2,

and qH
1 q2 = 0, we have that

r12 = qH
1 a2.
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Subsequently,

q2 = y2/‖y2‖2, r22 = ‖y2‖2

where

y2 = a2 − r12q1

Repeating the above steps, we have, for k = 2, . . . , n,

rik = qH
i ak, i = 1, . . . , k − 1

yk = ak −
k−1∑
i=1

rikqi

qk = yk/‖yk‖2, rkk = ‖yk‖2
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To complete the above Gram-Schmidt (GS) procedure, we

need

yk 6= 0, ∀k
for all k. This is true when A is of full column rank.

The GS procedure leads to a thin QR decomposition

A = Q1R1

where Q1 ∈ Cm×n has orthonormal columns, and

R1 ∈ Cn×n is upper triangular.
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We can always find a matrix Q2 ∈ C(m−n)×n so that

Q = [ Q1 Q2 ]

is unitary.

We can then form a complete QR decomposition

A = [ Q1 Q2 ]


R1

0
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Theorem 9.1 If A has full column rank, then the

decomposition

A = Q1R1

where R1 ∈ Cn×n is upper triangular with positive diagonal

entries, Q1 ∈ Cm×n is semi-unitary, is unique.

Proof: Since

AHA = RH
1 R1,

RH
1 is also the Cholesky factor which is unique (cf.,

Theorem 7.3). It follows that Q1 = AR−1
1 is also unique.

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University 7

COM521500 Math. Methods for Signal Processing I Lecture 9: QR Decomposition

Some properties resulting from the GS procedure:

Property 9.1 For full column rank A,

span{a1, . . . , ak} = span{q1, . . . ,qk}

for k = 1, . . . , n.

Property 9.2 For full column rank A,

R(A) = R(Q1), R⊥(A) = R(Q2)

Property 9.3 For full column rank A, R1 is nonsingular.
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For rank deficient A, a QR pair can be constructed.

In the GS procedure, do the following the modification

qk = 0, rkk = 0 if yk = 0.

for k = 1, . . . , n.

Let Q′
1 ∈ Cm×r be a matrix containing the nonzero qk’s.

Let Q′
2 = [ q′r+1, . . . ,q

′
n ] be a matrix so that [ Q′

1 Q′
2 ] is

unitary.

Replace the first zero column vector qk by q′r+1, the 2nd qk

by q′r+2, and so on. A QR decomposition will then be

obtained.
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Application: Full column rank LS

Consider again the LS problem

min
x∈Cn

‖Ax− b‖2
2

where A is of full column rank.
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Let

QHb =


QH

1

QH
2


b =


c

d




We have that

‖Ax− b‖2
2 = ‖QH(Ax− b)‖2

2

=

∥∥∥∥∥∥


R1

0


x−


c

d




∥∥∥∥∥∥

2

2

= ‖R1x− c‖2
2 + ‖d‖2

2

Hence, the LS solution is

xLS = R−1
1 c
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In practice, the classical GS procedure is numerically

unstable.

There are several other ways of finding QR factors. In this

course we consider

modified GS

Householder transform

Givens rotations.
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Modified GS

Partition

R1 =



rT
1

...

rT
n




The decomposition of A can be expressed as

A = QR =
n∑

i=1

qir
T
i
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At stage k, consider

A−
k−1∑
i=1

qir
T
i =

n∑

i=k

qir
T
i

= [ 0 . . .0︸ ︷︷ ︸
k−1

rkkqk, rk,k+1qk + rkkqk, . . . ]

Thus,

yk = (A−∑k−1
i=1 qir

T
i )ek

qk = yk/‖yk‖2,

rT
k = qH

k (A−∑k−1
i=1 qir

T
i )

Unlike the classical GS, the modified GS has been found to

be numerically very stable.
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Householder QR

It is easier to look at the real-value case; the idea in the

complex case is more or less the same.

To see how the Householder QR algorithm works, it is

necessary to understand the concepts of reflection matrices

and Householder transformation.
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A matrix is called a reflection matrix if it is given by

H = I− 2P

where P ∈ Rm×m is an orthogonal projection matrix.

A reflection matrix is symmetric, and orthogonal.

Let x = Px + P⊥x. We have that

Hx = −Px + P⊥x

where the component Px is reflected.
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Householder transformation:

The Householder transformation is to find a matrix, denoted

by H so that

Hx = βe1,

i.e., the elements of Hx is eliminated except for the 1st.

Let

P = ν(νT ν)−1νT

where ν is to be determined.
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Now,

Hx = x− 2νTx

νT ν
ν ∈ span{x,ν}

If Hx = βe1 is what we want, then

ν = x + αe1

for some coefficient α.

If we set α = ‖x‖2, then it can be verified that

Hx = −‖x‖2e1

Note that a similar effect occurs when α = −‖x‖2

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University 18



COM521500 Math. Methods for Signal Processing I Lecture 9: QR Decomposition

Householder QR:

Let H1 ∈ Rm×m be the Householder transformation for a1.

Then,

A1 = H1A

=




× × . . . ×
0 × . . . ×
... × . . . ×
0 × . . . ×
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Let

H2 =


1 0

0 H̃2




where H̃2 ∈ Rm−1×m−1 is the Householder transform for

A1(2 : m, 2). Then,

A2 = H2A1

=




× × × . . . ×
0 × × . . . ×
... 0 × . . . ×
...

... × . . . ×
0 0 × . . . ×
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It follows that at stage k,

Ak = HkAk−1

where

Hk =


Ik−1 0

0 H̃k


 ,

and H̃k ∈ R(m−k+1)×(m−k+1) is the Householder

transformation for Ak−1(k : m, k).
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The process continues for n− 1 stages. We then obtain

An−1 = Hn−1 . . .H2H1A

The matrix An−1 , R is upper triangular.

Since each Hk is orthogonal,
∏n−1

i=1 Hi , Q is also

orthogonal.
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Givens Rotations

Again, in the Givens QR decomposition, it is instructive to

look at the real case.

Let

Jik(θ) =




I

c(θ) s(θ)

I

−s(θ) c(θ)

I




where c(θ) = cos(θ), s(θ) = sin(θ), the (i, k) entry is

−s(θ), and so on.
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A Givens rotation Jik(θ) is orthogonal.

For example,

J21(θ)J
T
21(θ) =




c(θ) s(θ)

−s(θ) c(θ)

I







c(θ) −s(θ)

s(θ) c(θ)

I




=




c2(θ) + s2(θ) −c(θ)s(θ) + c(θ)s(θ)

−c(θ)s(θ) + c(θ)s(θ) c2(θ) + s2(θ)

I




=


I

I
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Consider J21(θ)A:

J21(θ)A =




c(θ) s(θ)

−s(θ) c(θ)

I







a11 a12 . . .

a21 a22 . . .
...

...




=




× × . . .

−s(θ)a11 + c(θ)a21 × . . .
...

...




Set θ = tan−1(a21/a11). Then

−s(θ)a11 + c(θ)a21 = 0.
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For notational simplicity, let Jik = Jik(θ) where θ is chosen

to annihilate the (i, k) entry of the transformed matrix.

By performing a sequence of Givens rotations to annihilate

the lower triangular parts of A, we obtain

Jn,n−1 . . . (Jn,2 . . .J32)(Jn1 . . .J21)︸ ︷︷ ︸
QT

A = R

which is upper triangular.
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