COM521500
 Math. Methods for SP |
 Lecture 7: Solving Square Linear Systems

Motivation

To solve

$$
\mathbf{A x}=\mathbf{b}
$$

for \mathbf{x}, we can explicitly invert A. Such a direct method, however, is not the best way from a computational complexity viewpoint.

There exists computationally faster methods for finding \mathbf{x}, which do not need explicit computation of \mathbf{A}.

LU Decomposition

A nonsingular $n \times n$ matrix A may be decomposed as

$$
\mathbf{A}=\mathbf{L U}
$$

where \mathbf{L} is a lower triangular matrix with $\operatorname{diag}(\mathbf{L})=[1,1, \ldots, 1]^{T}$, and \mathbf{U} is an upper triangular matrix.

The above decomposition is called the LU decomposition of \mathbf{A}.

To solve $\mathbf{A x}=\mathbf{b}$ for \mathbf{x} is equivalent to

$$
\begin{array}{ll}
\text { solve } \mathbf{L z}=\mathbf{b} \text { for } \mathbf{z} & \text { (forward substitution) } \\
\text { solve } \mathbf{U x}=\mathbf{z} \text { for } \mathbf{x} & \text { (backward substitution) }
\end{array}
$$

Example: backward substitution
The solution to

$$
\left[\begin{array}{cc}
u_{11} & u_{12} \\
0 & u_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]
$$

is

$$
\begin{aligned}
& x_{2}=z_{2} / u_{22} \\
& x_{1}=\left(z_{1}-u_{12} x_{2}\right) / u_{11}
\end{aligned}
$$

Backward Substitution Algorithm:

$$
\begin{aligned}
& \text { for } i=n, n-1, \ldots, 1 \\
& x_{i}:=z_{i} \\
& \text { for } j=i+1, \ldots, 1 \\
& x_{i}:=x_{i}-u_{i j} x_{j} \\
& \text { end } \\
& x_{i}:=x_{i} / u_{i i} \\
& \text { end }
\end{aligned}
$$

Likewise, we have

Forward Substitution Algorithm:

$$
\begin{aligned}
& \text { for } \quad i=1,2, \ldots, n \\
& \qquad \begin{array}{l}
z_{i}:=b_{i} \\
\quad \text { for } j=1, \ldots, i-1 \\
\quad z_{i}:=z_{i}-\ell_{i j} z_{j} \\
\\
\quad \text { end } \\
\quad z_{i}:=x_{i} / \ell_{i i} \\
\text { end }
\end{array}
\end{aligned}
$$

We can find a sequence of $n \times n$ matrices $\mathbf{M}_{1}, \mathbf{M}_{2}, \ldots, \mathbf{M}_{n-1}$ so that

$$
\mathbf{M}_{n-1} \ldots \mathbf{M}_{2} \mathbf{M}_{1} \mathbf{A}=\mathbf{U}
$$

where \mathbf{U} is upper triangular.

Let

$$
\mathbf{A}^{(k)}=\mathbf{M}_{k} \mathbf{A}^{(k-1)}
$$

with $\mathbf{A}^{(0)}=\mathbf{A}$, and $\mathbf{A}^{(n-1)}=\mathbf{U}$.
Each matrix \mathbf{M}_{k} is chosen so that

$$
\mathbf{A}^{(k)}=\left[\begin{array}{cc}
\mathbf{A}_{11}^{(k)} & \mathbf{A}_{12}^{(k)} \\
\mathbf{0}_{n-k, n-k} & \mathbf{A}_{22}^{(k)}
\end{array}\right]
$$

where $\mathbf{A}_{11}^{(k)} \in \mathbb{C}^{k \times k}$ is upper triangular.

Such an \mathbf{M}_{k} is given by

$$
\mathbf{M}_{k}=\mathbf{I}-\boldsymbol{\tau}^{(k)} \mathbf{e}_{k}^{T}
$$

where $\left[\mathbf{e}_{k}\right]_{i}=1$ for $i=k$, and $\left[\mathbf{e}_{k}\right]_{i}=0$ otherwise;

$$
\begin{aligned}
\boldsymbol{\tau}^{(k)} & =\left[0, \ldots, 0, \tau_{k+1}^{(k)}, \ldots \tau_{n}^{(k)}\right]^{T} \\
\tau_{i}^{(k)} & =a_{i k}^{(k-1)} / a_{k k}^{(k-1)}
\end{aligned}
$$

The element $a_{k k}^{(k-1)}$ is called the pivot element.
It is required that $a_{k k}^{(k-1)} \neq 0$. (If not, then a process called pivoting is needed)

The matrix \mathbf{M}_{k} has a structure

$$
\mathbf{M}_{k}=\left[\begin{array}{cccccc}
1 & & & & & \\
& \ddots & & & & \\
& & 1 & & & \\
& & -\tau_{k+1}^{(k)} & 1 & & \\
& & \vdots & & \ddots & \\
& & -\tau_{n}^{(k)} & & & 1
\end{array}\right]
$$

and hence is lower triangular.

If $\mathbf{M}_{n-1} \ldots \mathbf{M}_{1}$ were invertible, then by letting

$$
\mathbf{L}^{-1}=\mathbf{M}_{n-1} \ldots \mathbf{M}_{1}
$$

we obtain the LU decomposition

$$
\mathbf{A}=\mathbf{L U}
$$

Some useful properties:
Property 7.1 If $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{n \times n}$ are lower triangular with unit diagonal entries, then AB is lower triangular with unit diagonal entries.

Property 7.2 If \mathbf{A} is nonsingular and lower triangular, then \mathbf{A}^{-1} is lower triangular. In addition, \mathbf{A}^{-1} has unit diagonal entries if \mathbf{A} has unit diagonal entries.

It follows from Property 7.1 that $\mathbf{M}_{n-1} \ldots \mathbf{M}_{1}$ is lower triangular.

Moreover, we see from Property 7.2 that if $\mathbf{M}_{n-1} \ldots \mathbf{M}_{1}$ is invertible, then $\mathbf{L}=\left(\mathbf{M}_{n-1} \ldots \mathbf{M}_{1}\right)^{-1}$ is lower triangular.

Is $\mathbf{M}_{n-1} \ldots \mathbf{M}_{1}$ is invertible?
By noting that

$$
\begin{aligned}
\left(\mathbf{I}+\boldsymbol{\tau}^{(k)} \mathbf{e}_{k}^{T}\right) \mathbf{M}_{k} & =\left(\mathbf{I}+\boldsymbol{\tau}^{(k)} \mathbf{e}_{k}^{T}\right)\left(\mathbf{I}-\boldsymbol{\tau}^{(k)} \mathbf{e}_{k}^{T}\right) \\
& =\mathbf{I}+\boldsymbol{\tau}^{(k)} \mathbf{e}_{k}^{T}-\boldsymbol{\tau}^{(k)} \mathbf{e}_{k}^{T}+\boldsymbol{\tau}^{(k)} \underbrace{\mathbf{e}_{k}^{T} \boldsymbol{\tau}^{(k)}}_{=0} \mathbf{e}_{k}^{T} \\
& =\mathbf{I}
\end{aligned}
$$

we have

$$
\mathbf{M}_{k}^{-1}=\mathbf{I}+\boldsymbol{\tau}^{(k)} \mathbf{e}_{k}^{T}
$$

thereby showing that \mathbf{M}_{k} 's are invertible.
Subsequently, $\mathbf{M}_{n-1} \ldots \mathbf{M}_{1}$ is invertible.

It can be further shown that \mathbf{L} can be easily computed (without inverting $\mathbf{M}_{n-1} \ldots \mathbf{M}_{1}$):

$$
\begin{aligned}
\mathbf{L} & =\left(\mathbf{M}_{n-1} \ldots \mathbf{M}_{1}\right)^{-1} \\
& =\mathbf{M}_{1}^{-1} \ldots \mathbf{M}_{n-1}^{-1} \\
& =\mathbf{I}+\sum_{k=1}^{n-1} \boldsymbol{\tau}^{(k)} \mathbf{e}_{k}^{T}
\end{aligned}
$$

From the above equation, it is clear that
$\operatorname{diag}(\mathbf{L})=[1,1, \ldots, 1]^{T}$.

Having studied the construction of LU factors, we consider the existence of the LU decomposition:

Theorem 7.1 A matrix A has an LU decomposition if

$$
\operatorname{det}(\mathbf{A}(\{1, \ldots, k\})) \neq 0
$$

for $k=1,2, \ldots, n-1$. If the LU decomposition exists and \mathbf{A} is nonsingular, then the decomposition is unique.

A consequence of LU decomposition is that
Property $7.3 \operatorname{det}(\mathbf{A})=\prod_{i=1}^{n} u_{i i}$
This provides us with a numerically fast method of computing the determinant.

The inverse can also be numerically computed by using the LU decomposition, since $\mathrm{A}^{-1}=\mathbf{U}^{-1} \mathbf{L}^{-1}$ \& inverting lower/upper triangular matrices are rather simple.

Some remarks:

1. For real-valued \mathbf{A}, the LU decomposition requires $O\left(2 n^{3} / 3\right)$ flops.
2. Gauss elimination is numerically unstable when a pivot element $a_{k k}^{(k-1)}$ is zero or close to zero. In that case, pivoting is required. Pivoting works by interchanging the rows of $\mathbf{A}^{(k)}$ to obtain better pivot elements.

LDM Factorization

For a nonsingular A, we can decompose

$$
\mathbf{A}=\mathbf{L D M}^{H}
$$

where \mathbf{L} is lower triangular with $\operatorname{diag}(\mathbf{L})=[1, \ldots, 1]^{T}, \&$
\mathbf{M} is lower triangular with $\operatorname{diag}(\mathbf{M})=[1, \ldots, 1]^{T}$.
Apparently LDM factorization is a variant of LU, where $\mathbf{U}=\mathbf{D M}{ }^{H}$.

LDL Factorization for Hermitian Matrices

Theorem 7.2 If $\mathbf{A}=\mathbf{L D M}^{H}$ is the LDM factorization of a nonsingular Hermitian \mathbf{A}, then $\mathbf{L}=\mathbf{M}$.

For real-valued A, LDL factorization requires $O\left(n^{3} / 3\right)$ flops instead of $O\left(2 n^{3} / 3\right)$.

Cholesky Factorization for PD Matrices

Theorem 7.3 If A is PD , then there exists a unique lower triangular $n \times n \mathbf{G}$ with positive diagonal entries, such that

$$
\mathbf{A}=\mathbf{G G}^{H}
$$

