COM521500 Math. Methods for SP I Lecture 6: Sensitivity of Square Linear Systems

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

1

COM521500 Math. Methods for Signal Processing I Lecture 6: Sensitivity of Square Linear Systems

A square linear system takes the form

Ax = b

where $\mathbf{A} \in \mathbb{C}^{n \times n}$ is nonsingular.

The objective is to find \mathbf{x} , given the data matrices \mathbf{A} and \mathbf{b} .

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

In practice, A and b may contain errors; e.g., floating point errors.

In that case we are solving a perturbed system:

$$(\mathbf{A} + \Delta \mathbf{A})\mathbf{y} = \mathbf{b} + \Delta \mathbf{b}$$

where \mathbf{y} is the solution of the above system. The vector \mathbf{y} can be represented by

$$\mathbf{y} = \mathbf{x} + \Delta \mathbf{x}$$

We are interested in studying how Δx is affected by ΔA and $\Delta \mathbf{b}$.

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

3

COM521500 Math. Methods for Signal Processing I Lecture 6: Sensitivity of Square Linear Systems

For notational convenience, define $\|.\|$ to be a (arbitrary) *p*-norm.

Consider the following perturbed system formulation:

$$(\mathbf{A} + \epsilon \mathbf{F})\mathbf{x}(\epsilon) = \mathbf{b} + \epsilon \mathbf{f}$$

where ϵ determines the scale of perturbation, and ${\bf F}$ and ${\bf f}$ are error matrices with a constant norm.

Note that $\mathbf{x}(0) = \mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$.

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

Theorem 6.1

$$\frac{\|\mathbf{x}(\epsilon) - \mathbf{x}\|}{\|\mathbf{x}\|} \le \epsilon \kappa(\mathbf{A}) \left(\frac{\|\mathbf{f}\|}{\|\mathbf{b}\|} + \frac{\|\mathbf{F}\|}{\|\mathbf{A}\|}\right) + O(\epsilon^2)$$

where

$$\kappa(\mathbf{A}) = \|\mathbf{A}\| \|\mathbf{A}^{-1}\|$$

is called the condition number.

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

5

COM521500 Math. Methods for Signal Processing I Lecture 6: Sensitivity of Square Linear Systems

Note that if the 2-norm is used, then the cond. number is

$$\kappa_2(\mathbf{A}) = rac{\sigma_1(\mathbf{A})}{\sigma_n(\mathbf{A})}.$$

Theorem 6.1 shows that fixing ϵ , the error in $\mathbf{x}(\epsilon)$ increases as the condition number increases.

If ${f A}$ is close to singular, then $\kappa_2({f A})\gg 1$ and there is significant error in $\mathbf{x}(\epsilon)$ even for very small ϵ .

The above sensitivity analysis is accurate for small ϵ , in which case $O(\epsilon^2)$ is negligible.

We look at an alternate analysis that is mathematically more rigorous.

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

COM521500 Math. Methods for Signal Processing I Lecture 6: Sensitivity of Square Linear Systems

Lemma 6.1 If $\mathbf{F} \in \mathbb{C}^{n \times n}$ and $\|\mathbf{F}\| < 1$, then $\mathbf{I} - \mathbf{F}$ is nonsingular and

$$(\mathbf{I} - \mathbf{F})^{-1} = \sum_{k=0}^{\infty} \mathbf{F}^k$$

with

$$\|(\mathbf{I} - \mathbf{F})^{-1}\| \le \frac{1}{1 - \|\mathbf{F}\|}$$

Theorem 6.2 Suppose that A is nonsingular, and consider the inverse of $\mathbf{A} + \mathbf{E}$ for some error matrix \mathbf{E} . If $r = \|\mathbf{A}^{-1}\mathbf{E}\| < 1$, then $\mathbf{A} + \mathbf{E}$ is nonsingular and

$$\|(\mathbf{A} + \mathbf{E})^{-1} - \mathbf{A}^{-1}\| \le \frac{\|\mathbf{E}\| \|\mathbf{A}^{-1}\|^2}{1 - r}$$

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

7

Lemma 6.2 Suppose

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
$$(\mathbf{A} + \Delta \mathbf{A})\mathbf{y} = \mathbf{b} + \Delta \mathbf{b}$$

with $\|\Delta \mathbf{A}\| \leq \epsilon \|\mathbf{A}\|$ and $\|\Delta \mathbf{b}\| \leq \epsilon \|\mathbf{b}\|$. If $\epsilon \kappa(\mathbf{A}) = r < 1$, then $\mathbf{A} + \Delta \mathbf{A}$ is nonsingular and

$$\frac{\|\mathbf{y}\|}{\|\mathbf{x}\|} \le \frac{1+r}{1-r}$$

Theorem 6.3 If the conditions in Lemma 6.2 hold, then

$$\frac{\|\mathbf{y} - \mathbf{x}\|}{\|\mathbf{x}\|} \le \frac{2\epsilon}{1 - r}\kappa(\mathbf{A})$$

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University