COM521500

Math. Methods for SP I
Lecture 5: Positive Semidefinite
Matrices

Institute Comm. Eng. \& Dept. Elect. Eng., National Tsing Hua University

Quadratic Form

The quantity

$$
\mathbf{x}^{H} \mathbf{A} \mathbf{x}
$$

is called the quadratic form. It can be expressed as

$$
\mathbf{x}^{H} \mathbf{A} \mathbf{x}=\sum_{i=1}^{n} \sum_{k=1}^{n} a_{i k} x_{i}^{*} x_{k}
$$

Consider complex-valued, Hermitian A.
The quadratic form $\mathbf{x}^{H} \mathbf{A x}$ is real-valued for any $\mathbf{x} \in \mathbb{C}^{n}$.

Consider real-valued \mathbf{A}. Every $\mathbf{A} \in \mathbb{R}^{n \times n}$ can be written as

$$
\mathbf{A}=\mathbf{T}+\mathbf{S}
$$

where $\mathbf{T}=\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{T}\right)$ is symmetric, and $\mathbf{S}=\frac{1}{2}\left(\mathbf{A}-\mathbf{A}^{T}\right)$ is skew-symmetric; i.e., $\mathrm{S}^{T}=-\mathrm{S}$.

It can be verified that $\mathbf{x}^{T} \mathbf{S} \mathbf{x}=0$ for any $\mathbf{x} \in \mathbb{R}^{n}$. Hence, $\mathbf{x}^{T} \mathbf{A x}$ only depends on the symmetric part of \mathbf{A}.

Every $\mathbf{A} \in \mathbb{R}^{n \times n}$ can be written as

$$
\mathbf{A}=\mathbf{T}+\mathbf{S}
$$

where

$$
\mathbf{T}=\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{T}\right)
$$

is symmetric, and

$$
\mathbf{S}=\frac{1}{2}\left(\mathbf{A}-\mathbf{A}^{T}\right)
$$

is skew-symmetric; i.e., $\mathbf{S}^{T}=-\mathbf{S}$.
It can be verified that $\mathbf{x}^{T} \mathbf{S} \mathbf{x}=0$ for any \mathbf{x}.

Positive Definite/Semidefinite Matrices

A Hermitian matrix $\mathbf{A} \in \mathbb{C}^{n}$ is said to be positive semidefinite (PSD) if

$$
\mathbf{x}^{H} \mathbf{A} \mathbf{x} \geq 0
$$

for any $\mathrm{x} \in \mathbb{C}^{n}, \mathrm{x} \neq \mathbf{0}$.
A Hermitian matrix $\mathbf{A} \in \mathbb{C}^{n}$ is said to be positive definite (PD) if

$$
\mathbf{x}^{H} \mathbf{A} \mathbf{x}>0
$$

for any $\mathrm{x} \in \mathbb{C}^{n}, \mathrm{x} \neq \mathbf{0}$.
A Hermitian matrix that is not PD or PSD is called an indefinite matrix.

Quadratic form for a positive definite matrix.

Quadratic form for an indefinite matrix.

PD and PSD matrices are frequently encountered in practice.

For example, the covariance matrix for a random process $\mathbf{x}[n] \in \mathbb{C}^{N}$

$$
\begin{aligned}
\mathbf{R}_{x} & =\mathrm{E}\left\{\mathbf{x}[n] \mathbf{x}^{H}[n]\right\} \\
& =\left[\begin{array}{ccc}
\mathrm{E}\left\{\left|x_{1}[n]\right|^{2}\right\} & \ldots & \mathrm{E}\left\{x_{1}[n] x_{N}^{*}[n]\right\} \\
\vdots & \ddots & \vdots \\
\mathrm{E}\left\{x_{N}[n] x_{1}^{*}[n]\right\} & \ldots & \mathrm{E}\left\{x_{N}[n] x_{1}^{*}[n]\right\}
\end{array}\right]
\end{aligned}
$$

is always PSD.

A principal submatrix of $\mathbf{A} \in \mathbb{C}^{N}$, denoted by

$$
\mathbf{A}\left(\left\{k_{1}, \ldots, k_{r}\right\}\right)
$$

where $\left\{k_{1}, \ldots, k_{r}\right\} \subset\{1,2, \ldots, n\}$ is an index set, is a matrix obtained by keeping only the k_{i} th rows and columns of \mathbf{A} for $i=1,2, \ldots, r$.

Property 4.1 If \mathbf{A} is $P S D$, then any principal submatrix is PSD.

Example: Partition

$$
\mathbf{A}=\left[\begin{array}{ll}
\mathbf{A}_{11} & \mathbf{A}_{12} \\
\mathbf{A}_{21} & \mathbf{A}_{22}
\end{array}\right]
$$

If \mathbf{A} is PSD , then \mathbf{A}_{11} and \mathbf{A}_{22} are PSD.

Property 4.2 Let $\mathbf{A} \in \mathbb{C}^{n}$ be PD . If $\mathbf{C} \in \mathbb{C}^{n \times m}$ then $\mathbf{C}^{H} \mathbf{A C}$ is PSD. Furthermore, $\mathbf{C} \in \mathbb{C}^{n \times m}$ is PD if and only if $\operatorname{rank}(\mathbf{C})=m$.

Example: Let $\mathbf{x}[n]$ be a WSS process with covariance \mathbf{R}_{x}, and consider another process

$$
\mathbf{y}[n]=\mathbf{C}^{H} \mathbf{x}[n]
$$

The covariance of $\mathbf{y}[n]$ is

$$
\mathbf{R}_{y}=\mathbf{C}^{H} \mathbf{R}_{x} \mathbf{C}
$$

which is PSD.

Theorem 4.1 A Hermitian matrix \mathbf{A} is PSD if and only if all the eigenvalues of \mathbf{A} are non-negative. A Hermitian matrix \mathbf{A} is $P D$ if and only if all the eigenvalues of \mathbf{A} are positive.

It follows that

1. PD matrices are always invertible;
2. $\operatorname{tr}(\mathbf{A})=\sum_{i=1}^{n} \lambda_{i}$ is positive/non-negative for a PD/PSD matrix;
3. $\operatorname{det}(\mathbf{A})=\prod_{i=1}^{n} \lambda_{i}$ is positive/non-negative for a PD/PSD matrix.

Theorem 4.2 A Hermitian matrix A can be decomposed into the form

$$
\begin{equation*}
\mathbf{A}=\mathbf{B}^{H} \mathbf{B} \tag{*}
\end{equation*}
$$

if and only if \mathbf{A} is PD or PSD.
The matrix \mathbf{B} in $(*)$ is called a square root factor. It is not unique.

