COM521500 Math. Methods for SP I Lecture 5: Positive Semidefinite Matrices

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

COM521500 Math. Methods for Signal Processing I

Lecture 5: Positive Semidefinite Matrices

The quantity

 $\mathbf{x}^{H}\mathbf{A}\mathbf{x}$

is called the quadratic form. It can be expressed as

$$\mathbf{x}^H \mathbf{A} \mathbf{x} = \sum_{i=1}^n \sum_{k=1}^n a_{ik} x_i^* x_k$$

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

Consider complex-valued, Hermitian A.

The quadratic form $\mathbf{x}^{H}\mathbf{A}\mathbf{x}$ is real-valued for any $\mathbf{x} \in \mathbb{C}^{n}$.

Consider real-valued A. Every $\mathbf{A} \in \mathbb{R}^{n imes n}$ can be written as

$$\mathbf{A} = \mathbf{T} + \mathbf{S}$$

where $\mathbf{T} = \frac{1}{2}(\mathbf{A} + \mathbf{A}^T)$ is symmetric, and $\mathbf{S} = \frac{1}{2}(\mathbf{A} - \mathbf{A}^T)$ is skew-symmetric; i.e., $\mathbf{S}^T = -\mathbf{S}$.

It can be verified that $\mathbf{x}^T \mathbf{S} \mathbf{x} = 0$ for any $\mathbf{x} \in \mathbb{R}^n$. Hence, $\mathbf{x}^T \mathbf{A} \mathbf{x}$ only depends on the symmetric part of \mathbf{A} .

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

COM521500 Math. Methods for Signal Processing I

Lecture 5: Positive Semidefinite Matrices

Every $\mathbf{A} \in \mathbb{R}^{n imes n}$ can be written as

$$\mathbf{A} = \mathbf{T} + \mathbf{S}$$

where

$$\mathbf{T} = \frac{1}{2} (\mathbf{A} + \mathbf{A}^T)$$

is symmetric, and

$$\mathbf{S} = \frac{1}{2} (\mathbf{A} - \mathbf{A}^T)$$

is skew-symmetric; i.e., $\mathbf{S}^T = -\mathbf{S}$.

It can be verified that $\mathbf{x}^T \mathbf{S} \mathbf{x} = 0$ for any \mathbf{x} .

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

Positive Definite/Semidefinite Matrices

A Hermitian matrix $\mathbf{A} \in \mathbb{C}^n$ is said to be **positive** semidefinite (PSD) if

$$\mathbf{x}^H \mathbf{A} \mathbf{x} \ge 0$$

for any $\mathbf{x} \in \mathbb{C}^n$, $\mathbf{x} \neq \mathbf{0}$.

A Hermitian matrix $\mathbf{A} \in \mathbb{C}^n$ is said to be **positive definite** (PD) if

$$\mathbf{x}^H \mathbf{A} \mathbf{x} > 0$$

for any $\mathbf{x} \in \mathbb{C}^n$, $\mathbf{x} \neq \mathbf{0}$.

A Hermitian matrix that is not PD or PSD is called an **indefinite** matrix.

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

5

COM521500 Math. Methods for Signal Processing I

Lecture 5: Positive Semidefinite Matrices

Quadratic form for a positive definite matrix.

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

Quadratic form for an indefinite matrix.

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

COM521500 Math. Methods for Signal Processing I

Lecture 5: Positive Semidefinite Matrices

PD and PSD matrices are frequently encountered in practice.

For example, the covariance matrix for a random process $\mathbf{x}[n] \in \mathbb{C}^N$

$$\mathbf{R}_{x} = \mathbf{E}\{\mathbf{x}[n]\mathbf{x}^{H}[n]\}$$
$$= \begin{bmatrix} \mathbf{E}\{|x_{1}[n]|^{2}\} & \dots & \mathbf{E}\{x_{1}[n]x_{N}^{*}[n]\}\\ \vdots & \ddots & \vdots\\ \mathbf{E}\{x_{N}[n]x_{1}^{*}[n]\} & \dots & \mathbf{E}\{x_{N}[n]x_{1}^{*}[n]\} \end{bmatrix}$$

is always PSD.

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

A principal submatrix of $\mathbf{A} \in \mathbb{C}^N$, denoted by

 $\mathbf{A}(\{k_1,\ldots,k_r\})$

where $\{k_1, \ldots, k_r\} \subset \{1, 2, \ldots, n\}$ is an index set, is a matrix obtained by keeping only the k_i th rows and columns of **A** for $i = 1, 2, \ldots, r$.

Property 4.1 If \mathbf{A} is PSD, then any principal submatrix is PSD.

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

COM521500 Math. Methods for Signal Processing I

Lecture 5: Positive Semidefinite Matrices

Example: Partition

$$\mathbf{A} = egin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix}$$

If A is PSD, then A_{11} and A_{22} are PSD.

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

Property 4.2 Let $\mathbf{A} \in \mathbb{C}^n$ be PD. If $\mathbf{C} \in \mathbb{C}^{n \times m}$ then $\mathbf{C}^H \mathbf{A} \mathbf{C}$ is PSD. Furthermore, $\mathbf{C} \in \mathbb{C}^{n \times m}$ is PD if and only if rank $(\mathbf{C}) = m$.

Example: Let $\mathbf{x}[n]$ be a WSS process with covariance \mathbf{R}_x , and consider another process

$$\mathbf{y}[n] = \mathbf{C}^H \mathbf{x}[n]$$

The covariance of $\mathbf{y}[n]$ is

$$\mathbf{R}_y = \mathbf{C}^H \mathbf{R}_x \mathbf{C}$$

which is PSD.

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

COM521500 Math. Methods for Signal Processing I

Lecture 5: Positive Semidefinite Matrices

Theorem 4.1 A Hermitian matrix A is PSD if and only if all the eigenvalues of A are non-negative. A Hermitian matrix A is PD if and only if all the eigenvalues of A are positive.

It follows that

- 1. PD matrices are always invertible;
- 2. $tr(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i$ is positive/non-negative for a PD/PSD matrix;
- 3. det(A) = $\prod_{i=1}^{n} \lambda_i$ is positive/non-negative for a PD/PSD matrix.

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

Theorem 4.2 A Hermitian matrix ${\bf A}$ can be decomposed into the form

$$\mathbf{A} = \mathbf{B}^H \mathbf{B} \tag{(*)}$$

if and only if ${\bf A}$ is PD or PSD.

The matrix ${\bf B}$ in (*) is called a square root factor. It is not unique.

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University