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Singular Value Decomposition (SVD)

Theorem 4.1 Every A ∈ C
m×n can be decomposed as

A = UΣVH

where U ∈ Cm×m and V ∈ Cn×n are unitary, and

Σ = Diag(σ1, . . . , σp) ∈ R
m×n, p = min(m, n),

where σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0.
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The values σi are called the singular values of A. The

columns ui & vi of U & V are called the left and right

singular vectors of A.

Outer product representation of SVD:

A =

p
∑

i=1

σiuiv
H
i
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Relationship with the 2-norm:

Recall ‖A‖2 =
√

λmax, where λmax is the max. eigenvalue

of AHA.

By SVD A = UΣVH ,

AHA = VΣ2VH .

It follows that the eigenvalues of AHA are σ2
i , and that the

eigenvector matrix of AHA is V. Thus,

‖A‖2 = σ1
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Relationship with eigendecomposition:

Consider a Hermitian A ∈ Cn×n. Eigendcomposition:

A = QΛQH ⇐⇒ AQ = QΛ

⇐⇒ Aqi = λiqi, i = 1, . . . , n

SVD:

A = UΣVH ⇐⇒ AV = UΣ

⇐⇒ Avi = σiui, i = 1, . . . , n

Hence, for Hermitian A we have U = V = Q & Λ = Σ.
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Partitioning the SVD

Suppose that the number of nonzero singular values is

r ≤ p; i.e., σr+1 = σr+2 = . . . σp = 0.

The SVD can be rewritten as

A =
[

U1 U2

]





Σ̃ 0

0 0









VH
1

VH
2





where Σ̃ = Diag(σ1, . . . , σr) ∈ R
r×r, U1 ∈ C

m×r,

U2 ∈ Cm×m−r, V1 ∈ Cn×r, and V2 ∈ Cn×m−r.
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Property 4.1 rank(A) = r.

Property 4.2 N(A) = R(V2).

Property 4.3 R(A) = R(U1).

Property 4.4 R(AH) = R(V1).

Property 4.5 R⊥(A) = R(U2).
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Inverse

Consider a square, nonsingular A.

A−1 = VΣ−1UH

An alternate form of the inverse:

A−1 =

p
∑

i=1

1

σi

viu
H
i
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Linear System of Equations

Given A ∈ C
m×n, b ∈ C

n, the problem of the linear system

of eqns. is find an x ∈ Cm (or multiple x’s) such that

Ax = b

We have learnt that for m = n, Ax = b is always satisfied

if A is nonsingular.

Can Ax = b be satisfied when m 6= n, and/or when A is

rank deficient?
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Ax = b

⇐⇒UΣVHx = b

⇐⇒Σd = c

where

d = VHx =





VH
1 x

VH
2 x



 =





d1

d2





c = UHb =





UH
1 x

UH
2 b



 =





c1

c2
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Case A: m > n, and r = n.

In this case V = V1, d1 = d, &

Σd = c

⇐⇒





Σ̃d

0



 =





c1

c2





Ax = b can only be satisfied if b ∈ R⊥(U2) = R(U1).
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Case B: m > n, and r = n.

In this case U = U1, c1 = c, &

Σd = c

⇐⇒
[

Σ̃ 0

]





d1

d2



 =
[

c

]

⇐⇒Σ̃d1 = c

Ax = b can always be satisfied, but x is not unique.

If xo is a solution to Ax = b, then xo + V2c2, for any

c2 ∈ Cn−r is also a solution.
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Case C: r < min(m, n).

Σd = c

⇐⇒





Σ̃ 0

0 0









d1

d2



 =





c1

c2





Ax = b can only be satisfied if b ∈ R(U1).

If xo is a solution to Ax = b, then xo + V2c2, for any

c2 ∈ C
n−r is also a solution.
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Low Rank Approximation

Theorem 4.2 Let UΣVH be the SVD of A. For

k < r = rank(A), the solution to the problem

min
B∈Cm×n,
rank(B)=k

‖A − B‖2

is

Ak =
k

∑

i=1

σiuiv
H
i .

Moreover, the minimal objective function value is

‖A − Ak‖2 = σk+1
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Theorem 4.3 Let UΣVH be the SVD of A. For

k < r = rank(A), the solution to the problem

min
B∈Cm×n,
rank(B)=k

‖A −B‖2
F

is

Ak =
k

∑

i=1

σiuiv
H
i .
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Recall the KL transform in Lecture 3.

The vector x̂n, formed from truncating N − r KL

coefficients, has the covariance matrix given by

Rx̂ = VDiag(λ1, . . . , λr, 0, . . . , 0)VH

From Theorems 4.2 & 4.3 we know that Rx̂ is the closest

rank-r matrix to the true signal covariance matrix Rx, in

the 2-norm and Frobenius-norm senses.
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Orthogonal Projection

The idea: An arbitrary vector y can be expressed as

y = ys + yc

where ys ∈ S, & yc ∈ S⊥.

We are interested in obtaining a matrix P, called the

orthogonal projection, such that

Py = ys
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Application: noise reduction

Consider a received signal that consists of a signal vector

s ∈ S and noise w:

y = s + w

We don’t know s, but we do know S.

We can enhance the signal by performing a projection

Py = s + ws

where ws = Pw is a residual noise vector.
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A matrix P ∈ C
n×n is an orthogonal projection onto S if

1. R(P) = S,

2. P2 = P, and

3. PH = P.

Note that a matrix having the property P2 = P is called an

idempotent matrix.
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We have learnt that for a subspace S with a dimension m,

there is a full rank matrix X ∈ Cn×m, such that S = R(X).

An orthogonal projection onto S = R(X) is

P = X(XHX)−1XH (∗)

Exercise: Verify that (∗) satisfies the 3 properties for an

orthogonal projection matrix.
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Theorem 4.4 The orthogonal projection matrix in (∗) is

unique (i.e., there does not exist P1 such that P1 is an

orthogonal projection onto S and P1 6= P).
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The orthogonal complement projection:

By observing that

y = ys + yc = Py + yc,

we obtain

yc = (I −P)y

and that (I− P) is the orthogonal projection onto the

orthogonal complement subspace S⊥.
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Property 4.6

• V1V
H
1 is the orthogonal projection onto R(AH).

• V2V
H
2 is the orthogonal projection onto N(A).

• U1U
H
1 is the orthogonal projection onto R(A).

• U2U
H
2 is the orthogonal projection onto R⊥(A).

Property 4.7 The eigenvalues of a projection matrix is

either 1 or 0. The number of nonzero eigenvalues is the

dimension of the associated subspace.
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Distance between subspaces:

Let S1 & S2 be two subspaces with dim S1 = dim S2.

Let P1 & P2 be the orthogonal projection matrices of S1 &

S2, respectively.

The distance between S1 & S2 is defined as

dist(S1,S2) = ‖P1 − P2‖2

= max
‖x‖2=1

‖P1x − P2x‖2
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Theorem 4.5 Suppose

W = [ W1 W2 ], Z = [ Z1 Z2 ]

are unitary, where W1,Z1 ∈ C
n×k. If S1 = R(W1) &

S2 = R(Z1), then

dist(S1,S2) = ‖WH
1 Z2‖2 = ‖ZH

1 W2‖2
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Property 4.8 0 ≤ dist(S1,S2) ≤ 1.

Property 4.9 If S1 = S2, then dist(S1,S2) = 0.

Property 4.10 If S1 ∪ S⊥
2 6= {0}, then dist(S1,S2) = 1.
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