COM521500 Math. Methods for SP I Lecture 4: Singular Value Decomposition & Orthogonal Projection

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

1

COM521500 Math. Methods for Signal Processing I

Lecture 4: SVD & Orthogonal Projection

Theorem 4.1 Every $\mathbf{A} \in \mathbb{C}^{m imes n}$ can be decomposed as

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^H$$

where $\mathbf{U} \in \mathbb{C}^{m imes m}$ and $\mathbf{V} \in \mathbb{C}^{n imes n}$ are unitary, and

$$\Sigma = \text{Diag}(\sigma_1, \dots, \sigma_p) \in \mathbb{R}^{m \times n}, \qquad p = \min(m, n),$$

where $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_p \geq 0$.

The values σ_i are called the **singular values** of **A**. The columns $\mathbf{u}_i \ \& \ \mathbf{v}_i$ of $\mathbf{U} \ \& \ \mathbf{V}$ are called the **left and right** singular vectors of A.

Outer product representation of SVD:

$$\mathbf{A} = \sum_{i=1}^{p} \sigma_i \mathbf{u}_i \mathbf{v}_i^H$$

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

COM521500 Math. Methods for Signal Processing I Lecture 4: SVD & Orthogonal Projection

Relationship with the 2-norm:

Recall $\|\mathbf{A}\|_2 = \sqrt{\lambda_{max}}$, where λ_{max} is the max. eigenvalue of $\mathbf{A}^{H}\mathbf{A}$.

By SVD $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{H}$,

$$\mathbf{A}^H \mathbf{A} = \mathbf{V} \mathbf{\Sigma}^2 \mathbf{V}^H.$$

It follows that the eigenvalues of $\mathbf{A}^{H}\mathbf{A}$ are σ_{i}^{2} , and that the eigenvector matrix of $\mathbf{A}^{H}\mathbf{A}$ is \mathbf{V} . Thus,

$$\|\mathbf{A}\|_2 = \sigma_1$$

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

Relationship with eigendecomposition:

Consider a Hermitian $\mathbf{A} \in \mathbb{C}^{n \times n}$. Eigendcomposition:

$$\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{H} \iff \mathbf{A} \mathbf{Q} = \mathbf{Q} \mathbf{\Lambda}$$
$$\iff \mathbf{A} \mathbf{q}_{i} = \lambda_{i} \mathbf{q}_{i}, \quad i = 1, \dots, n$$

SVD:

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{H} \iff \mathbf{A} \mathbf{V} = \mathbf{U} \mathbf{\Sigma}$$
$$\iff \mathbf{A} \mathbf{v}_{i} = \sigma_{i} \mathbf{u}_{i}, \quad i = 1, \dots, n$$

Hence, for Hermitian A we have $\mathbf{U}=\mathbf{V}=\mathbf{Q}~\&~\Lambda=\boldsymbol{\Sigma}.$

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

5

COM521500 Math. Methods for Signal Processing I Lecture 4: SVD & Orthogonal Projection

Partitioning the SVD

Suppose that the number of nonzero singular values is $r \leq p$; i.e., $\sigma_{r+1} = \sigma_{r+2} = \dots \sigma_p = 0$.

The SVD can be rewritten as

$$\mathbf{A} = \begin{bmatrix} \mathbf{U}_1 & \mathbf{U}_2 \end{bmatrix} \begin{bmatrix} \tilde{\boldsymbol{\Sigma}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{V}_1^H \\ \mathbf{V}_2^H \end{bmatrix}$$

where $\tilde{\mathbf{\Sigma}} = \mathrm{Diag}(\sigma_1, \ldots, \sigma_r) \in \mathbb{R}^{r imes r}$, $\mathbf{U}_1 \in \mathbb{C}^{m imes r}$, $\mathbf{U}_2 \in \mathbb{C}^{m imes m-r}$, $\mathbf{V}_1 \in \mathbb{C}^{n imes r}$, and $\mathbf{V}_2 \in \mathbb{C}^{n imes m-r}$.

Property 4.1 rank(\mathbf{A}) = r. **Property 4.2** $N(A) = R(V_2)$. **Property 4.3** $R(A) = R(U_1)$. **Property 4.4** $R(\mathbf{A}^{H}) = R(\mathbf{V}_{1}).$ **Property 4.5** $R_{\perp}(\mathbf{A}) = R(\mathbf{U}_2).$

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

COM521500 Math. Methods for Signal Processing I Lecture 4: SVD & Orthogonal Projection

Inverse

Consider a square, nonsingular \mathbf{A} .

$$\mathbf{A}^{-1} = \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^H$$

An alternate form of the inverse:

$$\mathbf{A}^{-1} = \sum_{i=1}^{p} \frac{1}{\sigma_i} \mathbf{v}_i \mathbf{u}_i^H$$

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

Linear System of Equations

Given $\mathbf{A} \in \mathbb{C}^{m imes n}$, $\mathbf{b} \in \mathbb{C}^n$, the problem of the linear system of eqns. is find an $\mathbf{x} \in \mathbb{C}^m$ (or multiple \mathbf{x} 's) such that

$$Ax = b$$

We have learnt that for m = n, Ax = b is always satisfied if A is nonsingular.

Can Ax = b be satisfied when $m \neq n$, and/or when A is rank deficient?

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

COM521500 Math. Methods for Signal Processing I

Lecture 4: SVD & Orthogonal Projection

$$A\mathbf{x} = \mathbf{b}$$
$$\iff \mathbf{U}\mathbf{\Sigma}\mathbf{V}^{H}\mathbf{x} = \mathbf{b}$$
$$\iff \mathbf{\Sigma}\mathbf{d} = \mathbf{c}$$

where

$$\mathbf{d} = \mathbf{V}^H \mathbf{x} = egin{bmatrix} \mathbf{V}_1^H \mathbf{x} \\ \mathbf{V}_2^H \mathbf{x} \end{bmatrix} = egin{bmatrix} \mathbf{d}_1 \\ \mathbf{d}_2 \end{bmatrix}$$
 $\mathbf{c} = \mathbf{U}^H \mathbf{b} = egin{bmatrix} \mathbf{U}_1^H \mathbf{x} \\ \mathbf{U}_2^H \mathbf{b} \end{bmatrix} = egin{bmatrix} \mathbf{c}_1 \\ \mathbf{c}_2 \end{bmatrix}$

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

Case A: m > n, and r = n. In this case $\mathbf{V} = \mathbf{V}_1$, $\mathbf{d}_1 = \mathbf{d}$, &

$$\Sigma \mathbf{d} = \mathbf{c}$$
 $\iff egin{bmatrix} ilde{\Sigma} \mathbf{d} \ \mathbf{0} \end{bmatrix} = egin{bmatrix} \mathbf{c}_1 \ \mathbf{c}_2 \end{bmatrix}$

Ax = b can only be satisfied if $b \in R_{\perp}(U_2) = R(U_1)$.

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

COM521500 Math. Methods for Signal Processing I

Lecture 4: SVD & Orthogonal Projection

Case B: m > n, and r = n.

In this case $\mathbf{U}=\mathbf{U}_1$, $\mathbf{c}_1=\mathbf{c}$, &

$$egin{aligned} & \Sigma \mathbf{d} = \mathbf{c} \ & \iff & \left[ilde{\Sigma} \quad \mathbf{0}
ight] \begin{bmatrix} \mathbf{d}_1 \\ \mathbf{d}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{c} \end{bmatrix} \ & \iff & \tilde{\Sigma} \mathbf{d}_1 = \mathbf{c} \end{aligned}$$

Ax = b can always be satisfied, but x is not unique.

If \mathbf{x}_o is a solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$, then $\mathbf{x}_o + \mathbf{V}_2\mathbf{c}_2$, for any $\mathbf{c}_2 \in \mathbb{C}^{n-r}$ is also a solution.

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

Case C: $r < \min(m, n)$.

$$\Sigma \mathbf{d} = \mathbf{c}$$
 $\iff \begin{bmatrix} ilde{\Sigma} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{d}_1 \\ \mathbf{d}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{c}_1 \\ \mathbf{c}_2 \end{bmatrix}$

Ax = b can only be satisfied if $b \in R(U_1)$. If x_o is a solution to Ax = b, then $x_o + V_2c_2$, for any $c_2 \in \mathbb{C}^{n-r}$ is also a solution.

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

13

COM521500 Math. Methods for Signal Processing I

Lecture 4: SVD & Orthogonal Projection

Theorem 4.2 Let $U\Sigma V^H$ be the SVD of A. For $k < r = \operatorname{rank}(A)$, the solution to the problem

$$\min_{\substack{\mathbf{B}\in\mathbb{C}^{m\times n},\\ \operatorname{rank}(\mathbf{B})=k}} \|\mathbf{A}-\mathbf{B}\|_2$$

is

$$\mathbf{A}_k = \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^H.$$

Moreover, the minimal objective function value is

$$\|\mathbf{A} - \mathbf{A}_k\|_2 = \sigma_{k+1}$$

Theorem 4.3 Let $U\Sigma V^H$ be the SVD of A. For $k < r = \mathrm{rank}(\mathbf{A}),$ the solution to the problem

$$\min_{\substack{\mathbf{B}\in\mathbb{C}^{m\times n},\\ \operatorname{rank}(\mathbf{B})=k}} \|\mathbf{A}-\mathbf{B}\|_{F}^{2}$$

is

$$\mathbf{A}_k = \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^H.$$

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

COM521500 Math. Methods for Signal Processing I Lecture 4: SVD & Orthogonal Projection

Recall the KL transform in Lecture 3.

The vector $\hat{\mathbf{x}}_n$, formed from truncating $N - r \ \mathsf{KL}$ coefficients, has the covariance matrix given by

$$\mathbf{R}_{\hat{x}} = \mathbf{V} \text{Diag}(\lambda_1, \dots, \lambda_r, 0, \dots, 0) \mathbf{V}^H$$

From Theorems 4.2 & 4.3 we know that $\mathbf{R}_{\hat{x}}$ is the closest rank-r matrix to the true signal covariance matrix \mathbf{R}_{x} , in the 2-norm and Frobenius-norm senses.

Orthogonal Projection

The idea: An arbitrary vector y can be expressed as

 $\mathbf{y} = \mathbf{y}_s + \mathbf{y}_c$

where $\mathbf{y}_s \in \mathcal{S}$, & $\mathbf{y}_c \in \mathcal{S}_{\perp}$.

We are interested in obtaining a matrix \mathbf{P} , called the orthogonal projection, such that

$$\mathbf{P}\mathbf{y} = \mathbf{y}_s$$

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

17

COM521500 Math. Methods for Signal Processing I Lecture 4: SVD & Orthogonal Projection

Application: noise reduction

Consider a received signal that consists of a signal vector $\mathbf{s} \in \mathcal{S}$ and noise $\mathbf{w}:$

$$\mathbf{y} = \mathbf{s} + \mathbf{w}$$

We don't know s, but we do know \mathcal{S} .

We can enhance the signal by performing a projection

$$\mathbf{P}\mathbf{y} = \mathbf{s} + \mathbf{w}_s$$

where $\mathbf{w}_s = \mathbf{P}\mathbf{w}$ is a residual noise vector.

A matrix $\mathbf{P} \in \mathbb{C}^{n \times n}$ is an **orthogonal projection** onto \mathcal{S} if

1.
$$R(\mathbf{P}) = \mathcal{S}$$
,

2.
$$P^2 = P$$
, and

3. $\mathbf{P}^H = \mathbf{P}$.

Note that a matrix having the property $\mathbf{P}^2 = \mathbf{P}$ is called an idempotent matrix.

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

19

COM521500 Math. Methods for Signal Processing I Lecture 4: SVD & Orthogonal Projection

We have learnt that for a subspace S with a dimension m, there is a full rank matrix $\mathbf{X} \in \mathbb{C}^{n \times m}$, such that $\mathcal{S} = R(\mathbf{X})$.

An orthogonal projection onto $S = R(\mathbf{X})$ is

$$\mathbf{P} = \mathbf{X} (\mathbf{X}^H \mathbf{X})^{-1} \mathbf{X}^H \tag{(*)}$$

Exercise: Verify that (*) satisfies the 3 properties for an orthogonal projection matrix.

Theorem 4.4 The orthogonal projection matrix in (*) is unique (i.e., there does not exist P_1 such that P_1 is an orthogonal projection onto S and $P_1 \neq P$).

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

COM521500 Math. Methods for Signal Processing I Lecture 4: SVD & Orthogonal Projection

The orthogonal complement projection:

By observing that

$$\mathbf{y} = \mathbf{y}_s + \mathbf{y}_c = \mathbf{P}\mathbf{y} + \mathbf{y}_c,$$

we obtain

$$\mathbf{y}_c = (\mathbf{I} - \mathbf{P})\mathbf{y}$$

and that (I - P) is the orthogonal projection onto the orthogonal complement subspace \mathcal{S}_{\perp} .

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

Property 4.6

- $\mathbf{V}_1 \mathbf{V}_1^H$ is the orthogonal projection onto $R(\mathbf{A}^H)$.
- $\mathbf{V}_2 \mathbf{V}_2^H$ is the orthogonal projection onto $N(\mathbf{A})$.
- $\mathbf{U}_1\mathbf{U}_1^H$ is the orthogonal projection onto $R(\mathbf{A})$.
- $\mathbf{U}_2\mathbf{U}_2^H$ is the orthogonal projection onto $R_{\perp}(\mathbf{A})$.

Property 4.7 The eigenvalues of a projection matrix is either 1 or 0. The number of nonzero eigenvalues is the dimension of the associated subspace.

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

23

COM521500 Math. Methods for Signal Processing I

Lecture 4: SVD & Orthogonal Projection

Distance between subspaces:

Let $S_1 \& S_2$ be two subspaces with dim $S_1 = \dim S_2$. Let $\mathbf{P}_1 \& \mathbf{P}_2$ be the orthogonal projection matrices of $S_1 \& S_2$, respectively.

The distance between \mathcal{S}_1 & \mathcal{S}_2 is defined as

$$dist(\mathcal{S}_1, \mathcal{S}_2) = \|\mathbf{P}_1 - \mathbf{P}_2\|_2$$
$$= \max_{\|\mathbf{x}\|_2 = 1} \|\mathbf{P}_1 \mathbf{x} - \mathbf{P}_2 \mathbf{x}\|_2$$

Theorem 4.5 Suppose

 $\mathbf{W} = [\mathbf{W}_1 \mathbf{W}_2], \qquad \mathbf{Z} = [\mathbf{Z}_1 \mathbf{Z}_2]$

are unitary, where $\mathbf{W}_1, \mathbf{Z}_1 \in \mathbb{C}^{n \times k}$. If $\mathcal{S}_1 = R(\mathbf{W}_1)$ & $\mathcal{S}_2 = R(\mathbf{Z}_1)$, then

$$\operatorname{dist}(\mathcal{S}_1, \mathcal{S}_2) = \|\mathbf{W}_1^H \mathbf{Z}_2\|_2 = \|\mathbf{Z}_1^H \mathbf{W}_2\|_2$$

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

25

COM521500 Math. Methods for Signal Processing I Lecture 4: SVD & Orthogonal Projection

Property 4.8 $0 \leq \operatorname{dist}(\mathcal{S}_1, \mathcal{S}_2) \leq 1$. **Property 4.9** If $S_1 = S_2$, then $dist(S_1, S_2) = 0$. **Property 4.10** If $S_1 \cup S_2^{\perp} \neq \{0\}$, then $dist(S_1, S_2) = 1$.