COM521500

Math. Methods for SP I

Lecture 4: Singular Value
Decomposition \&
Orthogonal Projection

Singular Value Decomposition (SVD)

Theorem 4.1 Every $\mathbf{A} \in \mathbb{C}^{m \times n}$ can be decomposed as

$$
\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{H}
$$

where $\mathbf{U} \in \mathbb{C}^{m \times m}$ and $\mathbf{V} \in \mathbb{C}^{n \times n}$ are unitary, and

$$
\boldsymbol{\Sigma}=\operatorname{Diag}\left(\sigma_{1}, \ldots, \sigma_{p}\right) \in \mathbb{R}^{m \times n}, \quad p=\min (m, n),
$$

where $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{p} \geq 0$.

The values σ_{i} are called the singular values of \mathbf{A}. The columns $\mathbf{u}_{i} \& \mathbf{v}_{i}$ of $\mathbf{U} \& \mathbf{V}$ are called the left and right singular vectors of \mathbf{A}.

Outer product representation of SVD:

$$
\mathbf{A}=\sum_{i=1}^{p} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{H}
$$

Relationship with the 2-norm:

Recall $\|\mathbf{A}\|_{2}=\sqrt{\lambda_{\max }}$, where $\lambda_{\text {max }}$ is the max. eigenvalue of $\mathbf{A}^{H} \mathbf{A}$.

By SVD A = U $\mathbf{\Sigma} \mathbf{V}^{H}$,

$$
\mathbf{A}^{H} \mathbf{A}=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{H}
$$

It follows that the eigenvalues of $\mathbf{A}^{H} \mathbf{A}$ are σ_{i}^{2}, and that the eigenvector matrix of $\mathbf{A}^{H} \mathbf{A}$ is \mathbf{V}. Thus,

$$
\|\mathbf{A}\|_{2}=\sigma_{1}
$$

Relationship with eigendecomposition:

Consider a Hermitian $\mathbf{A} \in \mathbb{C}^{n \times n}$. Eigendcomposition:

$$
\begin{aligned}
\mathbf{A}=\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{H} & \Longleftrightarrow \mathbf{A Q}=\mathbf{Q} \boldsymbol{\Lambda} \\
& \Longleftrightarrow \mathbf{A} \mathbf{q}_{i}=\lambda_{i} \mathbf{q}_{i}, \quad i=1, \ldots, n
\end{aligned}
$$

SVD:

$$
\begin{aligned}
\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{H} & \Longleftrightarrow \mathbf{A V}=\mathbf{U} \mathbf{\Sigma} \\
& \Longleftrightarrow \mathbf{A v}_{i}=\sigma_{i} \mathbf{u}_{i}, \quad i=1, \ldots, n
\end{aligned}
$$

Hence, for Hermitian A we have $\mathrm{U}=\mathrm{V}=\mathrm{Q} \& \boldsymbol{\Lambda}=\boldsymbol{\Sigma}$.

Partitioning the SVD

Suppose that the number of nonzero singular values is $r \leq p$; i.e., $\sigma_{r+1}=\sigma_{r+2}=\ldots \sigma_{p}=0$.

The SVD can be rewritten as

$$
\mathbf{A}=\left[\begin{array}{ll}
\mathbf{U}_{1} & \mathbf{U}_{2}
\end{array}\right]\left[\begin{array}{cc}
\tilde{\boldsymbol{\Sigma}} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{V}_{1}^{H} \\
\mathbf{V}_{2}^{H}
\end{array}\right]
$$

where $\tilde{\boldsymbol{\Sigma}}=\operatorname{Diag}\left(\sigma_{1}, \ldots, \sigma_{r}\right) \in \mathbb{R}^{r \times r}, \mathbf{U}_{1} \in \mathbb{C}^{m \times r}$, $\mathbf{U}_{2} \in \mathbb{C}^{m \times m-r}, \mathbf{V}_{1} \in \mathbb{C}^{n \times r}$, and $\mathbf{V}_{2} \in \mathbb{C}^{n \times m-r}$.

Property 4.1 $\operatorname{rank}(\mathbf{A})=r$.
Property $4.2 N(\mathbf{A})=R\left(\mathbf{V}_{2}\right)$.
Property 4.3 $R(\mathbf{A})=R\left(\mathbf{U}_{1}\right)$.
Property 4.4 $R\left(\mathbf{A}^{H}\right)=R\left(\mathbf{V}_{1}\right)$.
Property 4.5 $R_{\perp}(\mathbf{A})=R\left(\mathbf{U}_{2}\right)$.

Inverse

Consider a square, nonsingular A.

$$
\mathbf{A}^{-1}=\mathbf{V} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{H}
$$

An alternate form of the inverse:

$$
\mathbf{A}^{-1}=\sum_{i=1}^{p} \frac{1}{\sigma_{i}} \mathbf{v}_{i} \mathbf{u}_{i}^{H}
$$

Linear System of Equations

Given $\mathbf{A} \in \mathbb{C}^{m \times n}, \mathbf{b} \in \mathbb{C}^{n}$, the problem of the linear system of eqns. is find an $\mathrm{x} \in \mathbb{C}^{m}$ (or multiple x 's) such that

$$
\mathrm{Ax}=\mathrm{b}
$$

We have learnt that for $m=n, \mathbf{A x}=\mathbf{b}$ is always satisfied if \mathbf{A} is nonsingular.

Can $\mathbf{A x}=\mathbf{b}$ be satisfied when $m \neq n$, and/or when \mathbf{A} is rank deficient?

$$
\begin{gathered}
\mathbf{A x}=\mathbf{b} \\
\Longleftrightarrow \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{H} \mathbf{x}=\mathrm{b} \\
\Longleftrightarrow \boldsymbol{\Sigma} \mathbf{d}=\mathbf{c}
\end{gathered}
$$

where

$$
\begin{aligned}
& \mathbf{d}=\mathbf{V}^{H} \mathbf{x}=\left[\begin{array}{l}
\mathbf{V}_{1}^{H} \mathbf{x} \\
\mathbf{V}_{2}^{H} \mathbf{x}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{d}_{1} \\
\mathbf{d}_{2}
\end{array}\right] \\
& \mathbf{c}=\mathbf{U}^{H} \mathbf{b}=\left[\begin{array}{l}
\mathbf{U}_{1}^{H} \mathbf{x} \\
\mathbf{U}_{2}^{H} \mathbf{b}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{c}_{1} \\
\mathbf{c}_{2}
\end{array}\right]
\end{aligned}
$$

Case A: $m>n$, and $r=n$.
In this case $\mathbf{V}=\mathbf{V}_{1}, \mathrm{~d}_{1}=\mathbf{d}$, \&

$$
\begin{gathered}
\Sigma \mathrm{d}=\mathbf{c} \\
\Longleftrightarrow\left[\begin{array}{c}
\tilde{\Sigma} \mathrm{d} \\
\mathbf{0}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{c}_{1} \\
\mathrm{c}_{2}
\end{array}\right]
\end{gathered}
$$

$\mathbf{A} \mathbf{x}=\mathbf{b}$ can only be satisfied if $\mathbf{b} \in R_{\perp}\left(\mathbf{U}_{2}\right)=R\left(\mathbf{U}_{1}\right)$.

Case B: $m>n$, and $r=n$.
In this case $\mathbf{U}=\mathbf{U}_{1}, \mathbf{c}_{1}=\mathbf{c}, \&$

$$
\begin{gathered}
\Sigma \mathrm{d}=\mathrm{c} \\
\Longleftrightarrow\left[\begin{array}{ll}
\tilde{\Sigma} & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{d}_{1} \\
\mathrm{~d}_{2}
\end{array}\right]=[\mathrm{c}] \\
\Longleftrightarrow \tilde{\Sigma} \mathrm{d}_{1}=\mathrm{c}
\end{gathered}
$$

$\mathrm{Ax}=\mathrm{b}$ can always be satisfied, but x is not unique.
If \mathbf{x}_{o} is a solution to $\mathbf{A x}=\mathbf{b}$, then $\mathbf{x}_{o}+\mathbf{V}_{2} \mathbf{c}_{2}$, for any $\mathbf{c}_{2} \in \mathbb{C}^{n-r}$ is also a solution.

Case C: $r<\min (m, n)$.

$$
\begin{aligned}
& \Sigma \mathrm{d}=\mathrm{c} \\
\Longleftrightarrow & {\left[\begin{array}{cc}
\tilde{\Sigma} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{d}_{1} \\
\mathrm{~d}_{2}
\end{array}\right]=\left[\begin{array}{l}
\mathrm{c}_{1} \\
\mathrm{c}_{2}
\end{array}\right] }
\end{aligned}
$$

$\mathbf{A} \mathbf{x}=\mathbf{b}$ can only be satisfied if $\mathbf{b} \in R\left(\mathbf{U}_{1}\right)$.
If \mathbf{x}_{o} is a solution to $\mathbf{A x}=\mathbf{b}$, then $\mathbf{x}_{o}+\mathbf{V}_{2} \mathbf{c}_{2}$, for any $\mathrm{c}_{2} \in \mathbb{C}^{n-r}$ is also a solution.

Low Rank Approximation

Theorem 4.2 Let $\mathbf{U} \Sigma \mathrm{V}^{H}$ be the SVD of \mathbf{A}. For $k<r=\operatorname{rank}(\mathbf{A})$, the solution to the problem

$$
\min _{\substack{\mathbf{B} \in \mathbb{C}^{m \times n} \times \\ \operatorname{rank}(\mathbf{B})=k}}\|\mathbf{A}-\mathbf{B}\|_{2}
$$

is

$$
\mathbf{A}_{k}=\sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{H} .
$$

Moreover, the minimal objective function value is

$$
\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{2}=\sigma_{k+1}
$$

Theorem 4.3 Let $\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{H}$ be the SVD of \mathbf{A}. For $k<r=\operatorname{rank}(\mathbf{A})$, the solution to the problem

$$
\min _{\substack{\mathbf{B} \in \mathbb{C}^{m \times n}, \operatorname{rank}(\mathbf{B})=k}}\|\mathbf{A}-\mathbf{B}\|_{F}^{2}
$$

is

$$
\mathbf{A}_{k}=\sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{H} .
$$

Recall the KL transform in Lecture 3.
The vector $\hat{\mathbf{x}}_{n}$, formed from truncating $N-r \mathrm{KL}$ coefficients, has the covariance matrix given by

$$
\mathbf{R}_{\hat{x}}=\operatorname{VDiag}\left(\lambda_{1}, \ldots, \lambda_{r}, 0, \ldots, 0\right) \mathbf{V}^{H}
$$

From Theorems 4.2 \& 4.3 we know that $\mathbf{R}_{\hat{x}}$ is the closest rank- r matrix to the true signal covariance matrix \mathbf{R}_{x}, in the 2 -norm and Frobenius-norm senses.

Orthogonal Projection

The idea: An arbitrary vector y can be expressed as

$$
\mathbf{y}=\mathbf{y}_{s}+\mathbf{y}_{c}
$$

where $\mathbf{y}_{s} \in \mathcal{S}, \& \mathbf{y}_{c} \in \mathcal{S}_{\perp}$.
We are interested in obtaining a matrix \mathbf{P}, called the orthogonal projection, such that

$$
\mathrm{Py}=\mathrm{y}_{s}
$$

Application: noise reduction

Consider a received signal that consists of a signal vector $\mathbf{s} \in \mathcal{S}$ and noise w:

$$
\mathrm{y}=\mathrm{s}+\mathrm{w}
$$

We don't know s, but we do know \mathcal{S}.
We can enhance the signal by performing a projection

$$
\mathrm{Py}=\mathrm{s}+\mathrm{w}_{s}
$$

where $\mathbf{w}_{s}=\mathbf{P W}$ is a residual noise vector.

A matrix $\mathbf{P} \in \mathbb{C}^{n \times n}$ is an orthogonal projection onto \mathcal{S} if

1. $R(\mathbf{P})=\mathcal{S}$,
2. $\mathbf{P}^{2}=\mathbf{P}$, and
3. $\mathbf{P}^{H}=\mathbf{P}$.

Note that a matrix having the property $\mathbf{P}^{2}=\mathbf{P}$ is called an idempotent matrix.

We have learnt that for a subspace \mathcal{S} with a dimension m, there is a full rank matrix $\mathbf{X} \in \mathbb{C}^{n \times m}$, such that $\mathcal{S}=R(\mathbf{X})$. An orthogonal projection onto $\mathcal{S}=R(\mathbf{X})$ is

$$
\begin{equation*}
\mathbf{P}=\mathbf{X}\left(\mathbf{X}^{H} \mathbf{X}\right)^{-1} \mathbf{X}^{H} \tag{*}
\end{equation*}
$$

Exercise: Verify that ($*$) satisfies the 3 properties for an orthogonal projection matrix.

Theorem 4.4 The orthogonal projection matrix in $(*)$ is unique (i.e., there does not exist \mathbf{P}_{1} such that \mathbf{P}_{1} is an orthogonal projection onto \mathcal{S} and $\left.\mathrm{P}_{1} \neq \mathrm{P}\right)$.

The orthogonal complement projection:

By observing that

$$
\mathbf{y}=\mathbf{y}_{s}+\mathbf{y}_{c}=\mathbf{P y}+\mathbf{y}_{c},
$$

we obtain

$$
\mathbf{y}_{c}=(\mathbf{I}-\mathbf{P}) \mathbf{y}
$$

and that $(\mathbf{I}-\mathbf{P})$ is the orthogonal projection onto the orthogonal complement subspace \mathcal{S}_{\perp}.

Property 4.6

- $\mathbf{V}_{1} \mathbf{V}_{1}^{H}$ is the orthogonal projection onto $R\left(\mathbf{A}^{H}\right)$.
- $\mathbf{V}_{2} \mathbf{V}_{2}^{H}$ is the orthogonal projection onto $N(\mathbf{A})$.
- $\mathbf{U}_{1} \mathbf{U}_{1}^{H}$ is the orthogonal projection onto $R(\mathbf{A})$.
- $\mathbf{U}_{2} \mathbf{U}_{2}^{H}$ is the orthogonal projection onto $R_{\perp}(\mathbf{A})$.

Property 4.7 The eigenvalues of a projection matrix is either 1 or 0 . The number of nonzero eigenvalues is the dimension of the associated subspace.

Distance between subspaces:

Let $\mathcal{S}_{1} \& \mathcal{S}_{2}$ be two subspaces with $\operatorname{dim} \mathcal{S}_{1}=\operatorname{dim} \mathcal{S}_{2}$.
Let $\mathbf{P}_{1} \& \mathbf{P}_{2}$ be the orthogonal projection matrices of $\mathcal{S}_{1} \&$ \mathcal{S}_{2}, respectively.

The distance between $\mathcal{S}_{1} \& \mathcal{S}_{2}$ is defined as

$$
\begin{aligned}
\operatorname{dist}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right) & =\left\|\mathbf{P}_{1}-\mathbf{P}_{2}\right\|_{2} \\
& =\max _{\|\mathbf{x}\|_{2}=1}\left\|\mathbf{P}_{1} \mathbf{x}-\mathbf{P}_{2} \mathbf{x}\right\|_{2}
\end{aligned}
$$

Theorem 4.5 Suppose

$$
\mathbf{W}=\left[\begin{array}{ll}
\mathbf{W}_{1} & \mathbf{W}_{2}
\end{array}\right], \quad \mathbf{Z}=\left[\begin{array}{ll}
\mathbf{Z}_{1} & \mathbf{Z}_{2}
\end{array}\right]
$$

are unitary, where $\mathbf{W}_{1}, \mathbf{Z}_{1} \in \mathbb{C}^{n \times k}$. If $\mathcal{S}_{1}=R\left(\mathbf{W}_{1}\right) \&$ $\mathcal{S}_{2}=R\left(\mathbf{Z}_{1}\right)$, then

$$
\operatorname{dist}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)=\left\|\mathbf{W}_{1}^{H} \mathbf{Z}_{2}\right\|_{2}=\left\|\mathbf{Z}_{1}^{H} \mathbf{W}_{2}\right\|_{2}
$$

Property $4.80 \leq \operatorname{dist}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right) \leq 1$.
Property 4.9 If $\mathcal{S}_{1}=\mathcal{S}_{2}$, then $\operatorname{dist}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)=0$.
Property 4.10 If $\mathcal{S}_{1} \cup \mathcal{S}_{2}^{\perp} \neq\{\mathbf{0}\}$, then $\operatorname{dist}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)=1$.

