Property 3.1

A matrix having a structure of

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \tag{1}\\
z_{1}^{-1} & z_{2}^{-1} & & z_{L}^{-1} \\
z_{1}^{-2} & z_{2}^{-2} & & z_{L}^{-2} \\
\vdots & \vdots & & \vdots \\
z_{1}^{-(M-1)} & z_{2}^{-(M-1)} & \ldots & z_{L}^{-(M-1)}
\end{array}\right]
$$

is called a Vandermonde matrix. The matrix A defined in our notes is indeed a special case of Vandermonde matrix where $z_{l}=e^{j \phi\left(\theta_{l}\right)}$.

Now we show that if $M \geq L$ and $z_{k} \neq z_{l}$ for $k \neq l$, then \mathbf{A} is of full rank. Let $\mathbf{a}_{k}=$ $\left[z_{1}^{-(k-1)}, z_{2}^{-(k-1)}, \ldots, z_{M}^{-(k-1)}\right]^{T}$ be a vector representing the k th row of \mathbf{A}. We are interested in whether the first L rows of \mathbf{A} are linear dependent; i.e.,

$$
\begin{equation*}
\sum_{k=1}^{L} \alpha_{k} \mathbf{a}_{k}=\mathbf{0} \tag{2}
\end{equation*}
$$

for some $\boldsymbol{\alpha}=\left[\alpha_{1}, \ldots, \alpha_{L}\right]^{T} \in \mathbb{C}^{L} \neq \mathbf{0}$. Eq. (2) is equivalent to

$$
\begin{equation*}
\alpha_{1}+\alpha_{2} z_{l}^{-1}+\alpha_{3} z_{l}^{-2}+\ldots+\alpha_{L} z_{l}^{-(L-1)}=0, \quad \text { for all } l=1, \ldots, L \tag{3}
\end{equation*}
$$

Condition (3) implies that there exist an $\boldsymbol{\alpha} \neq \mathbf{0}$ such that the polynomial

$$
\begin{equation*}
\alpha_{1}+\alpha_{2} z^{-1}+\alpha_{3} z^{-2}+\ldots+\alpha_{L} z^{-(L-1)} \tag{4}
\end{equation*}
$$

has L distinct roots given by $\left\{z_{l}\right\}_{l=1}^{L}$. However, (4) is a polynomial of order $L-1$ and has $L-1$ roots only. In other words, the linear dependence condition in (2) does not hold and thus $\left\{\mathbf{a}_{k}\right\}_{k=1}^{L}$ are linearly independent.

The linear independence of $\left\{\mathbf{a}_{k}\right\}_{k=1}^{L}$ implies that $\operatorname{rank}(\mathbf{A}) \geq L$. As $\operatorname{rank}(\mathbf{A}) \leq \min (L, M)=L$, we have $\operatorname{rank}(\mathbf{A})=L$ meaning that \mathbf{A} is of full rank.

Property 3.2

To prove Property 2 we consider the dimension of the range space of $\mathbf{A R}_{\mathbf{s}} \mathbf{A}^{H}$. The range space of $\mathbf{A} \mathbf{R}_{s} \mathbf{A}^{H}$ is expressed as

$$
\begin{align*}
\mathcal{R}\left(\mathbf{A R}_{s} \mathbf{A}^{H}\right) & =\left\{\mathbf{y} \in \mathbb{C}^{P} \mid \mathbf{y}=\mathbf{A R}_{\mathbf{s}} \mathbf{A}^{H} \mathbf{x}, \quad \mathbf{x} \in \mathbb{C}^{P}\right\} \tag{5}\\
& =\left\{\mathbf{y} \in \mathbb{C}^{P} \mid \mathbf{y}=\mathbf{A R}_{s} \mathbf{z}_{1}, \quad \mathbf{z}_{1} \in \mathcal{R}\left(\mathbf{A}^{H}\right)\right\} \tag{6}
\end{align*}
$$

Since $\operatorname{dim}\left\{\mathcal{R}\left(\mathbf{A}^{H}\right)\right\}=\operatorname{rank}\left(\mathbf{A}^{H}\right)=K, \mathcal{R}\left(\mathbf{A}^{H}\right)$ covers all elements in $\mathbb{C}^{K} ;$ i.e., $\mathcal{R}\left(\mathbf{A}^{H}\right)=\mathbb{C}^{K}$. Thus,

$$
\begin{align*}
\mathcal{R}\left(\mathbf{A R}_{s} \mathbf{A}^{H}\right) & =\left\{\mathbf{y} \in \mathbb{C}^{P} \mid \mathbf{y}=\mathbf{A R}_{\mathbf{z}_{1}}, \quad \mathbf{z}_{1} \in \mathbb{C}^{K}\right\} \tag{7}\\
& =\left\{\mathbf{y} \in \mathbb{C}^{P} \mid \mathbf{y}=\mathbf{A} \mathbf{z}_{2}, \quad \mathbf{z}_{2} \in \mathcal{R}\left(\mathbf{R}_{\mathbf{s}}\right)\right\} \tag{8}
\end{align*}
$$

Again, the full rank condition of \mathbf{R}_{s} implies $\mathcal{R}\left(\mathbf{R}_{s}\right)=\mathbb{C}^{K}$. Therefore,

$$
\begin{equation*}
\mathcal{R}\left(\mathbf{A R} \mathbf{R}_{s} \mathbf{A}^{H}\right)=\mathcal{R}(\mathbf{A}) \tag{9}
\end{equation*}
$$

and subsequently $\operatorname{dim}\left\{\mathcal{R}\left(\mathbf{A R}_{s} \mathbf{A}^{H}\right)\right\}=\operatorname{dim}\{\mathcal{R}(\mathbf{A})\}=K$.

Property 3.3

If $\{\lambda, \mathbf{v}\}$ is an eigen-pair for $\mathbf{A R}_{s} \mathbf{A}^{H}$, then

$$
\begin{align*}
\mathbf{R}_{y} \mathbf{v} & =\left(\mathbf{A R}_{s} \mathbf{A}^{H}+\sigma_{\nu}^{2} \mathbf{I}\right) \mathbf{v} \\
& =\left(\lambda+\sigma_{\nu}^{2}\right) \mathbf{v} \tag{10}
\end{align*}
$$

forms an eigen-equation for \mathbf{R}_{y}.

Property 3.4

Sufficiency: The eigenvectors associated with the zero eigenvalues satisfy

$$
\begin{equation*}
\mathbf{A R}_{s} \mathbf{A}^{H} \mathbf{v}_{i}=\mathbf{0}, \quad i=K+1, \ldots, P \tag{11}
\end{equation*}
$$

We rewrite (11) as

$$
\begin{align*}
\mathbf{A} \mathbf{z}_{i} & =\mathbf{0}, \quad i=K+1, \ldots, P \tag{12}\\
\mathbf{z}_{i} & =\mathbf{R}_{s} \mathbf{A}^{H} \mathbf{v}_{i} \tag{13}
\end{align*}
$$

Since the columns of \mathbf{A} are linearly independent, (12) holds if and only if $\mathbf{z}_{i}=\mathbf{0}$, or, equivalently,

$$
\begin{equation*}
\mathbf{R}_{s} \mathbf{A}^{H} \mathbf{v}_{i}=\mathbf{0} \tag{14}
\end{equation*}
$$

Since \mathbf{R}_{s} is invertible, the only possibility that (14) holds is $\mathbf{A}^{H} \mathbf{v}_{i}=\mathbf{0}$.
Necessity: Suppose that $\mathbf{V}_{2}^{H} \mathbf{a}(\theta)=\mathbf{0}$ for some $\theta \neq \theta_{i}$ for all $i=1, \ldots, K$. This implies $\mathbf{a}(\theta) \in R_{\perp}\left(\mathbf{V}_{2}\right)=R\left(\mathbf{V}_{1}\right)=R(\mathbf{A})$ (why?). Then,

$$
\begin{equation*}
\mathbf{a}(\theta)=\sum_{k=1}^{K} c_{k} \mathbf{a}\left(\theta_{k}\right) \tag{15}
\end{equation*}
$$

which is equivalent to that

$$
\begin{equation*}
\left[\mathbf{a}(\theta), \mathbf{a}\left(\theta_{1}\right), \ldots, \mathbf{a}\left(\theta_{K}\right)\right] \in \mathbb{C}^{P \times(K+1)} \tag{16}
\end{equation*}
$$

is linear dependent. But for $P>K$ Eq. (16) is a Vandemonde matrix with full rank. This contradicts the assumption that $\mathbf{V}_{2}^{H} \mathbf{a}(\theta)=\mathbf{0}$.

