Property 3.1

A matrix having a structure of

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ z_1^{-1} & z_2^{-1} & & z_L^{-1} \\ z_1^{-2} & z_2^{-2} & & z_L^{-2} \\ \vdots & \vdots & & \vdots \\ z_1^{-(M-1)} & z_2^{-(M-1)} & \dots & z_L^{-(M-1)} \end{bmatrix}$$
(1)

is called a *Vandermonde* matrix. The matrix **A** defined in our notes is indeed a special case of Vandermonde matrix where $z_l = e^{j\phi(\theta_l)}$.

Now we show that if $M \geq L$ and $z_k \neq z_l$ for $k \neq l$, then **A** is of full rank. Let $\mathbf{a}_k = [z_1^{-(k-1)}, z_2^{-(k-1)}, \dots, z_M^{-(k-1)}]^T$ be a vector representing the *k*th row of **A**. We are interested in whether the first *L* rows of **A** are linear dependent; i.e.,

$$\sum_{k=1}^{L} \alpha_k \mathbf{a}_k = \mathbf{0} \tag{2}$$

for some $\boldsymbol{\alpha} = [\alpha_1, \ldots, \alpha_L]^T \in \mathbb{C}^L \neq \mathbf{0}$. Eq. (2) is equivalent to

$$\alpha_1 + \alpha_2 z_l^{-1} + \alpha_3 z_l^{-2} + \ldots + \alpha_L z_l^{-(L-1)} = 0, \quad \text{for all } l = 1, \ldots, L$$
(3)

Condition (3) implies that there exist an $\alpha \neq 0$ such that the polynomial

$$\alpha_1 + \alpha_2 z^{-1} + \alpha_3 z^{-2} + \ldots + \alpha_L z^{-(L-1)}$$
(4)

has L distinct roots given by $\{z_l\}_{l=1}^L$. However, (4) is a polynomial of order L-1 and has L-1 roots only. In other words, the linear dependence condition in (2) does not hold and thus $\{\mathbf{a}_k\}_{k=1}^L$ are linearly independent.

The linear independence of $\{\mathbf{a}_k\}_{k=1}^L$ implies that $\operatorname{rank}(\mathbf{A}) \ge L$. As $\operatorname{rank}(\mathbf{A}) \le \min(L, M) = L$, we have $\operatorname{rank}(\mathbf{A}) = L$ meaning that \mathbf{A} is of full rank.

Property 3.2

To prove Property 2 we consider the dimension of the range space of $\mathbf{AR}_{s}\mathbf{A}^{H}$. The range space of $\mathbf{AR}_{s}\mathbf{A}^{H}$ is expressed as

$$\mathcal{R}(\mathbf{A}\mathbf{R}_{s}\mathbf{A}^{H}) = \{\mathbf{y} \in \mathbb{C}^{P} \mid \mathbf{y} = \mathbf{A}\mathbf{R}_{s}\mathbf{A}^{H}\mathbf{x}, \quad \mathbf{x} \in \mathbb{C}^{P}\}$$
(5)

$$= \{ \mathbf{y} \in \mathbb{C}^P \mid \mathbf{y} = \mathbf{A}\mathbf{R}_s \mathbf{z}_1, \quad \mathbf{z}_1 \in \mathcal{R}(\mathbf{A}^H) \}$$
(6)

Since dim{ $\mathcal{R}(\mathbf{A}^H)$ } = rank(\mathbf{A}^H) = K, $\mathcal{R}(\mathbf{A}^H)$ covers all elements in \mathbb{C}^K ; i.e., $\mathcal{R}(\mathbf{A}^H) = \mathbb{C}^K$. Thus,

$$\mathcal{R}(\mathbf{A}\mathbf{R}_{s}\mathbf{A}^{H}) = \{\mathbf{y} \in \mathbb{C}^{P} \mid \mathbf{y} = \mathbf{A}\mathbf{R}_{s}\mathbf{z}_{1}, \quad \mathbf{z}_{1} \in \mathbb{C}^{K}\}$$
(7)

$$= \{ \mathbf{y} \in \mathbb{C}^P \mid \mathbf{y} = \mathbf{A}\mathbf{z}_2, \quad \mathbf{z}_2 \in \mathcal{R}(\mathbf{R}_s) \}$$
(8)

Again, the full rank condition of \mathbf{R}_s implies $\mathcal{R}(\mathbf{R}_s) = \mathbb{C}^K$. Therefore,

$$\mathcal{R}(\mathbf{A}\mathbf{R}_s\mathbf{A}^H) = \mathcal{R}(\mathbf{A}) \tag{9}$$

and subsequently dim{ $\mathcal{R}(\mathbf{A}\mathbf{R}_s\mathbf{A}^H)$ } = dim{ $\mathcal{R}(\mathbf{A})$ } = K.

Property 3.3

If $\{\lambda, \mathbf{v}\}$ is an eigen-pair for $\mathbf{AR}_s \mathbf{A}^H$, then

$$\mathbf{R}_{y}\mathbf{v} = (\mathbf{A}\mathbf{R}_{s}\mathbf{A}^{H} + \sigma_{\nu}^{2}\mathbf{I})\mathbf{v}$$
$$= (\lambda + \sigma_{\nu}^{2})\mathbf{v}$$
(10)

forms an eigen-equation for \mathbf{R}_y .

Property 3.4

Sufficiency: The eigenvectors associated with the zero eigenvalues satisfy

$$\mathbf{AR}_{s}\mathbf{A}^{H}\mathbf{v}_{i} = \mathbf{0}, \qquad i = K+1, \dots, P$$
(11)

We rewrite (11) as

$$\mathbf{A}\mathbf{z}_i = \mathbf{0}, \qquad i = K + 1, \dots, P \tag{12}$$

$$\mathbf{z}_i = \mathbf{R}_s \mathbf{A}^H \mathbf{v}_i \tag{13}$$

Since the columns of **A** are linearly independent, (12) holds if and only if $\mathbf{z}_i = \mathbf{0}$, or, equivalently,

$$\mathbf{R}_s \mathbf{A}^H \mathbf{v}_i = \mathbf{0} \tag{14}$$

Since \mathbf{R}_s is invertible, the only possibility that (14) holds is $\mathbf{A}^H \mathbf{v}_i = \mathbf{0}$.

Necessity: Suppose that $\mathbf{V}_2^H \mathbf{a}(\theta) = \mathbf{0}$ for some $\theta \neq \theta_i$ for all $i = 1, \dots, K$. This implies $\mathbf{a}(\theta) \in R_{\perp}(\mathbf{V}_2) = R(\mathbf{V}_1) = R(\mathbf{A})$ (why?). Then,

$$\mathbf{a}(\theta) = \sum_{k=1}^{K} c_k \mathbf{a}(\theta_k) \tag{15}$$

which is equivalent to that

$$[\mathbf{a}(\theta), \mathbf{a}(\theta_1), \dots, \mathbf{a}(\theta_K)] \in \mathbb{C}^{P \times (K+1)}$$
(16)

is linear dependent. But for P > K Eq. (16) is a Vandemonde matrix with full rank. This contradicts the assumption that $\mathbf{V}_2^H \mathbf{a}(\theta) = \mathbf{0}$.