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Karhunen-Loeve Expansion

A quick review of random processes:

Consider a sequence of random signals {x1, x2, x3, . . .}. Let

r(n, ℓ) = E{xnx
∗

ℓ}

denote the auto-correlation function.

A random process is said to be wide-sense stationary

(WSS) if

rx(n, ℓ) = rx(n + i, ℓ + i)

for any i.

The same concepts apply to a vector sequence {x1,x2, . . .}.
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Let {xn}∞n=1 ∈ CN be a sequence of random vector signals.

The signal xn is assumed to be WSS with zero mean and

covariance

E{xnx
H
n } = Rx

Some properties of Rx:

1. Rx is Hermitian (and sym. for xk ∈ R
N )

2. Rx is positive semidefinite (will be discussed in this

course).
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Consider an orthonormal expansion of xn:

xn =
n

∑

i=1

ainqi

which can be expressed in a more compact form:

xn = Qan

Since Q is unitary,

an = QHxn

Signal representation by orthonormal expansion is very

common in SP; e.g., the discrete Fourier transform, and the

discrete cosine transform.
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Example: discrete Fourier transform

Q =
[

q1,q2, . . . ,qN

]

, qk =















1

ej2πk/N

...

ej2πk(N−1)/N
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In applications such as coding and compression, both the

transmitter and receiver know Q.

The transmitter sends an.

At the receiver, xn is constructed from an.

We are interested in finding a Q such that the coefficients

ain are uncorrelated, thereby eliminating redundancy.
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Let’s take a look at the covariance matrix of an:

Ra = E{ana
H
n }

= E{QHxnx
H
n Q}

= QHE{xnx
H
n }Q

= QHRxQ

Consider the eignedecomposition Rx = VΛVH .

Apparently, Ra is diagonal if (and only if) Q = V.

The expansion of xn using the eigenvectors of its covariance

Rx is called the Karhunen-Loeve expansion.
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With the Karhunen-Loeve (KL) expansion,

Ra =















E{|a1n|2} 0

E{|a2n|2}
. . .

0 E{|aN,n|2}















= Λ

Hence, λi = E{|ain|2} meaning that the eigenvalues are the

average energies of the KL coefficients.

There are many situations where the energy in the first few

KL coefficients ain dominates that in the remaining ones.
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For convenience, assume λ1 ≥ λ2 ≥ . . . ≥ λN .

In coding and compression applications, we consider

transmitting only part of the KL coefficients, specifically

those that have principal eigenvalues (or average energies):

ân = [ a1n, a2n, . . . , ar,n]T

The reconstruction of xn (which is an approximation unless

λr+1 = . . . = λN = 0) is then done by

x̂n =

r
∑

i=1

ainvi
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Some final remarks:

1. The KL transform requires knowledge of Rx. In practice

we can only estimate it by averaging:

R̂x =
1

M

M
∑

n=1

xnx
H
n

for some window length M .

2. We also need to transmit the eigenvector matrix of Rx,

which is not always bandwidth efficient.

3. For a class of covariance models, it has been shown that

the discrete cosine transform forms the KL. Thus, we

don’t need to transmit the eigenvector matrix.
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Subspace Methods for Sensor Array Processing

Applications of sensor array processing: radar, sonar,

communications, seismology, audio & speech processing, . . .

Two important problems in sensor array processing:

• Source Localization: estimate the source locations; e.g.,

the (x, y, z) coordinate, and the direction of arrival

(DOA).

• Beamforming: extract the desired source signal from

the received signals, given that the source location.
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We are interested in DOA estimation in uniform linear

arrays.
source

θ

d sin θ , ∆

dd

x(t) x
(

t − ∆
c

)

x
(

t − 2∆
c

)

x
(

t − (P − 1)∆
c

)

Uniform linear array
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Assume far-field situations in which cases source waves are

planar.

Supposing that there is only one radiating source in the free

space, the output of sensor p can be represented by

ỹp(t) = x

(

t − (p − 1)
d sin θ

c

)

where

x(t) represents the source signal impinging on sensor 1,

θ is the DOA of the source signal, and

c is the wave propagation velocity.
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In many applications, source signals are carrier-modulated:

x(t) = ejωcts(t)

Let yp(t) = e−jωctỹp(t) be a demodulated signal for sensor

p. Then,

yp(t) = e−jωctx(t− (p − 1)d sin θ/c)

= e−j(p−1)ωcd sin θ/cs (t − (p − 1)d sin θ/c)

Source signals are called narrowband if

s (t − (p − 1)d sin θ/c) ≃ s(t), ∀p ∈ {1, . . . , P}

Source signals are called wideband if the above assumption

does not hold.
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Let y(t) = [ y1(t), . . . , yP (t) ]T . It can be represented by

y(t) = a(θ)s(t)

Here,

a(θ) = [ 1, e−jφ(θ), e−2jφ(θ), . . . , e−j(P−1)φ(θ) ]T ,

is referred to as a steering vector, and

φ(θ) = ωcd sin θ/c = 2πd sin θ/λ.

where λ is the wavelength of the carrier frequency ωc.
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To avoid spatial aliasing (i.e., a(θ1) = a(θ2) for some

θ1 6= θ2, θ1, θ2 ∈ [−π
2

, π
2
]), we need

d ≤ λ

2
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Define y[n] = y(nTs) to be a time-sampled version of y(t).

Multiple signal model:

y[n] =
K

∑

k=1

a(θk)sk[n] + ν[n]

= As[n] + ν[n]

where A = [a(θ1), . . . , a(θK)], & s[n] = [s1[n], . . . , sK[n]]T .

Here,

sk[n] is kth source signal,

θk is the DOA of the kth source,

ν[n] is additive spatially white noise.
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Assume that sk[n] are wide-sense stationary.

Consider a correlation matrix Ry = E{y[n]yH[n]} ∈ CP×P .

Ry = ARsA
H + σ2

νI

where Rs = E{s[n]sH [n]} ∈ C
K×K .

Assume that

i) P > K,

ii) the DOAs θk are distinct; and

iii) sk[n] are not coherent (but can be correlated) to

one other such that Rs is of full rank.
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Property 3.1 For distinct θk, A is of full rank.

Consider the eigendecomposition of the signal correlation

matrix:

ARsA
H = VΛVH

where V = [ v1, . . . ,vP ], and Λ = Diag(λ1, . . . , λP ). We

assume λ1 ≥ λ2 ≥ . . . ≥ λP .

Property 3.2 The number of nonzero eigenvalues of

ARsA
H is K. Or, λK+1 = . . . = λP = 0.
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Property 3.3 The eigendecomposition of Rx is

Ry = V(Λ + σ2
νI)V

H .

Property 3.3 means that the eigenvector matrix of the signal

correlation matrix is the same as that of Ry.

Property 3.4 Partition V = [ V1 V2 ] where

V1 = [ v1, . . . ,vK ] & V2 = [ vK+1, . . . ,vP ]. We have

VH
2 a(θ) = 0

if and only if θ = θi for any i = 1, . . . , K.
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MUSIC: MUltiple SIgnal Classification

MUSIC is one of the most well known subspace DOA

estimation algorithms.

• Step 1. Compute the sample correlation matrix

R̂y = 1
N

∑N
n=1 y[n]yH[n]

• Step 2. Find the eigenvector matrix of R̂y, denoted by

V̂.

• Step 3. Determine the DOAs by finding the peaks of

the ‘pseudo-spectrum’

Pmusic(θ) =
1

‖V̂H
2 a(θ)‖2

2
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Circulant Matrix, & OFDM

A matrix having a structure of

H =















h0 hN−1 . . . h2 h1

h1 h0 . . . h3 h2

...
. . .

...

hN−1 hN−2 . . . h1 h0















is called a circulant matrix.
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Let

fk =
1√
N

[ 1 ej2πk/N ej4πk/N . . . ej2π(N−1)k/N ]T

for k = 0, 1, . . . , N − 1. It can be verified that

Hfk = H(ej2πk/N )fk

where

H(z) =
1√
N

N−1
∑

n=0

hnz
−n

is a normalized z-transform of {hn}.
This means that fk is an eigenvector of H, and that

H(ej2πk/N ) is an eigenvalue.
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Let F = [ f0 f1 . . . fN−1 ].

The matrix F is the inverse discrete Fourier transform

(DFT) matrix, and is unitary.

The matrix F−1 = FH is the DFT matrix.

Therefore, H has an eigendecomposition

H = FDFH

where

D = Diag(H(ej0), H(ej2π/N), . . . , H(ej2π(N−1)/N ))
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Digital communications over linear time-invariant channels

Transmit Filter Channel

Receive Filter

+

x̄[n]

t = nTc

ū[n]

x̄(t)

η(t)
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Continuous-time received signal model:

x̄(t) =
∞

∑

n=−∞

ū[n]h(t − nTc) + ν̄(t)

Here,

ū[n] transmitted signal sequence

h(t) overall impulse response of the transmit filter,

channel, and receive filter.

ν̄(t) noise.
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Discrete-time received signal model:

x̄[n] = x(t)
∣

∣

t=nTc

=

L
∑

ℓ=0

h[ℓ]ū[n − ℓ] + ν̄[n]

where h[n] = h(t)|t=nTc
, & ν̄[n] = ν̄(t)|t=nTc

.

The received signal is subject to inter-symbol interference

due to the dispersive effects of h[n].
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Orthogonal Frequency Division Multiplexing (OFDM)

Let P be a block length. P is chosen such that P ≫ L.

Let x̄i = [ x[iP ], x[iP + 1], . . . , x[iP + P − 1] ]T .

x̄i = H0ūi + H1ūi−1 + ν̄ i
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where

H0 =



























h[0] 0 0 . . . 0

h[1] h[0] 0 . . . 0
...

. . .

h[L]
. . .

...
. . . . . .

0 h[L] h[0]



























∈ C
P×P
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H1 =



























0 . . . 0 h[L] . . . h[1]
...

. . .
. . .

. . .
...

...
. . . . . . h[L]

...
. . . 0

...
. . .

...

0 . . . . . . . . . . . . 0



























∈ C
P×P
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H1 leads to interblock interference (IBI).

To obtain IBI-free blocks, let

R = [ 0N,L IN ] ∈ C
N×P

be a receive matrix where N = P − L. Define

xi = Rx̄i

The model for xi is

xi = RH0ūi + νi

where RH1 = 0.
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Note that

RH0 =















h[L] . . . h[1] h[0]

h[L] . . . h[1] h[0]
. . . . . . . . .

h[L] h[1] h[0]















∈ C
N×P

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University 33

COM521500 Math. Methods for Signal Processing I Lecture 3: Applications of Eigendecomposition

Cyclic prefix insertion

Let

T =





0N,L IL

IN



 ∈ C
P×N

a transmit matrix.

The transmitted block ūi ∈ CP is constructed by another

signal block ui ∈ C
N , through the process

ūi = Tui

The received block xi can then be expressed as

xi = H̃0ui + νi
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The channel matrix H̃0 = RH0T ∈ CN×N takes the form

H̃0 =



























h[0] h[L] . . . h[1]

h[1] h[0]
. . .

...
...

. . . h[L]

h[L]
. . .

. . .
. . .

h[L] . . . h[1] h[0]



























which is a circulant matrix.
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By eigendecomposition of H̃0,

xi = FDFHui + νi

Let si ∈ CN be a block of data symbols. We form ui by an

inverse DFT process:

ui = Fsi

Let yi = FHxi (i.e., the DFT of xi). We have

yi = Dsi + FH
νi

where the channel becomes diagonal, thereby achieving zero

ISI!
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Block transmission processes in OFDM

Cyclic Prefix InsertionInverse DFT

Conversion

Parallel−to−serial

Conversion
Serial−to−parallelGuard Interval RemovalDFT

xiyi

uisi

x̄i

ūi ū[n]

x̄[n]

F

FH

T

R
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