COM521500 Math. Methods for SP I Lecture 2: Eigenvalues and Eigenvectors

The Basics

Let \mathbf{A} be an $n \times n$ matrix. The eigenvalue problem is to find a vector v such that

$$
\mathbf{A} \mathbf{v}=\lambda \mathbf{v}, \quad \mathbf{v} \neq \mathbf{0}
$$

The scalar λ is called an eigenvalue of \mathbf{A}, and the vector \mathbf{v} is called an eigenvector of \mathbf{A}.

The eigen-equation can be rewritten as

$$
(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}=\mathbf{0},
$$

which is satisfied if and only if $\mathbf{A}-\lambda \mathbf{I}$ is singular. Thus,

$$
\begin{equation*}
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0 \tag{*}
\end{equation*}
$$

Eq. $\left(^{*}\right)$ is called the characteristic equation of \mathbf{A}, and $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})$ is called the characteristic polynomial of \mathbf{A}.

The function $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})$ is a polynomial of degree n, which means that it can be factored as

$$
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\prod_{i=1}^{n}\left(\lambda_{i}-\lambda\right)
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are the roots of the polynomial.
Thus,

$$
\mathbf{A} \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}, \quad i=1, \ldots, n
$$

where \mathbf{v}_{i} is the eigenvector associated with the eigenvalue λ_{i}, for $i=1, \ldots, n$.

Some remarks:

1. For any eigenvector \mathbf{v}_{i}, any vector $c \mathbf{v}, c \in \mathbb{R}$ is also an eigenvector. Often, the eigenvectors are assumed to be normalized; i.e., $\left\|\mathbf{v}_{i}\right\|_{2}=1$.
2. For an $\mathbf{A} \in \mathbb{R}^{n \times n}$, it is possible to have complex-valued λ_{i} 's (recall a root of a real-valued polynomial can be complex-valued). Under such circumstances the eigenvectors may be complex-valued too. Hence, it is convenient for us to study the case of $\mathbf{A} \in \mathbb{C}^{n \times n}$, which subsumes the case of $\mathbf{A} \in \mathbb{R}^{n \times n}$.

Similarity, and Diagonalizability

A matrix $\mathbf{B} \in \mathbb{C}^{n \times n}$ is similar to a matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ if there exists a nonsingular matrix $\mathbf{S} \in \mathbb{C}^{n \times n}$ such that

$$
\mathbf{B}=\mathbf{S}^{-1} \mathbf{A S}
$$

Property 2.1 If \mathbf{A} and B are similar, then the characteristic polynomial of \mathbf{A} is same as that of \mathbf{B}.

Property 2.2 If \mathbf{A} and B are similar, then they have the same eigenvalues, and the same determinant.

A matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ is said to be diagonalizable if it is similar to a diagonal matrix.

In other words, for a diagonalizable matrix A we can find a nonsingular matrix S such that

$$
\mathbf{A}=\mathbf{S D S}^{-1}
$$

where \mathbf{D} is a diagonal matrix.
Theorem 2.1 A matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ is diagonalizable if and only if there is a set of n linearly independent vectors, each of which is an eigenvector of \mathbf{A}.

Distinct eigenvalues

Property 2.3 Suppose that $\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}, k \leq n$, is a set of distinct eigenvalues; i.e, $\lambda_{i} \neq \lambda_{j}$ for $i \neq j$,
$i, j \in\{1,2, \ldots, k\}$. Then, the corresponding set of eigenvectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly independent.

It follows that if all the eigenvalues of \mathbf{A} are distinct, then A is diagonalizable.

Repeated eigenvalues

In the case where there are, say, r repeated eigenvalues, then a linearly independent set of r eigenvectors for those eigenvalues exists, provided that

$$
\begin{equation*}
\operatorname{rank}(\mathbf{A}-\lambda \mathbf{I})=n-r \tag{}
\end{equation*}
$$

Example: Show that

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

satisfies Condition (*).

Assume that the eigenvectors of \mathbf{A} are linear independent.
From Theorem 2.1, we obtain the following eq. known as the eigendecomposition:

$$
\mathbf{A}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{-1}
$$

where

$$
\begin{aligned}
& \mathbf{V}=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right] \\
& \mathbf{\Lambda}=\operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right]
\end{aligned}
$$

Orthogonality

Two vectors \mathbf{x}, \mathbf{y} (either real or complex valued) are said to be orthogonal if

$$
<\mathbf{x}, \mathbf{y}>=0
$$

A set of vectors $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\}$ is said to be orthogonal if $\left.<\mathbf{x}_{i}, \mathbf{x}_{k}\right\rangle=0$ for all $i \neq k$.

A set of vectors $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{m}\right\}$ is said to be orthonormal if $\left.<\mathbf{x}_{i}, \mathbf{x}_{k}\right\rangle=0$ for all $i \neq k$, and $\left\|\mathbf{x}_{i}\right\|_{2}^{2}=1$ for all i.

Property: An orthogonal set of vectors is linearly independent.

A matrix $\mathrm{U} \in \mathbb{C}^{n \times n}$ is said to be unitary if

$$
\mathbf{U}^{H} \mathbf{U}=\mathbf{I}
$$

A matrix $\mathrm{U} \in \mathbb{R}^{n \times n}$ is said to be orthogonal if

$$
\mathbf{U}^{T} \mathbf{U}=\mathbf{I}
$$

From the definition, a unitary (orthogonal) matrix is a matrix where its columns form an orthonormal set of vectors.

Some properties for unitary (orthogonal) matrices:

1. $\mathbf{U}^{-1}=\mathbf{U}^{H}$.
2. $\mathbf{U U}^{H}=\mathbf{I}$.
3. The rows of \mathbf{U} form an orthonormal set of vectors.

Symmetric and Hermitian matrices

A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric when

$$
\mathbf{A}=\mathbf{A}^{T}
$$

A matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ is Hermitian when

$$
\mathbf{A}=\mathbf{A}^{H}
$$

A real sym. matrix is a Hermitian matrix.
Note: Symmetric and Hermitian matrices are very frequently encountered in SP, and hence their eigenvector/ eigenvalue properties deserve particular attention.

Property 2.4 The eigenvalues of a Hermitian matrix are real.

Property 2.5 Let A be a Hermitian matrix, and suppose that all the eigenvalues of \mathbf{A} are distinct. Then, the eigenvectors of \mathbf{A} are mutually orthogonal.

We conclude that under the distinct eigenvalue assumption, the eigendecomposition of a Hermitian \mathbf{A} is

$$
\mathbf{A}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{H} \quad\left(\mathbf{A}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{T} \text { for real sym. } \mathbf{A}\right)
$$

Now the question remained is: can a Hermitian (real sym.) matrix have eigendecomposition?

This question has been answered by Schur triangularization theorem.

Theorem 2.2 (Schur triangularization) Given a matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$, there exists a unitary matrix $\mathbf{U} \in \mathbb{C}^{n \times n}$ such that

$$
\mathbf{U}^{H} \mathbf{A} \mathbf{U}=\mathbf{T}
$$

where \mathbf{T} is an upper triangular matrix with main diagonal $\operatorname{diag}(\mathbf{T})=\left[\lambda_{1}, \ldots, \lambda_{n}\right]^{T}$.

Now, consider a Hermitian A.

$$
\begin{aligned}
\mathbf{T}^{H} & =\left(\mathbf{U}^{H} \mathbf{A} \mathbf{U}\right)^{H} \\
& =\mathbf{U}^{H} \mathbf{A}^{H} \mathbf{U}=\mathbf{U}^{H} \mathbf{A U}=\mathbf{T}
\end{aligned}
$$

This implies that \mathbf{T} is diagonal, and that $\mathbf{T}=\boldsymbol{\Lambda}$. Thus, Theorem 2.3 A Hermitian matrix $\mathrm{A} \in \mathbb{C}^{n \times n}$ can always be diagonalized as

$$
\mathbf{V}^{H} \mathbf{A V}=\boldsymbol{\Lambda} \quad\left(\mathbf{V}^{T} \mathbf{A} \mathbf{V}=\boldsymbol{\Lambda} \text { for real sym. } \mathbf{A}\right)
$$

where $\boldsymbol{\Lambda}=\left[\lambda_{1}, \ldots, \lambda_{n}\right], \mathbf{V}=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right],\left\{\lambda_{i}\right\}$ is the set of eigenvalues of $\mathbf{A}, \mathbf{v}_{i}$ is the normalized eigenvector of A associated with λ_{i}.

Some properties obtained from Theorem 2.3:

Property 2.6 For Hermitian $\mathbf{A}, \mathbf{A}^{-1}=\mathbf{V} \mathbf{\Lambda}^{-1} \mathbf{V}^{H}$. [note that $\Lambda^{-1}=\operatorname{Diag}\left(\frac{1}{\lambda_{1}}, \ldots, \frac{1}{\lambda_{n}}\right)$.]

Property 2.7 For Hermitian $\mathbf{A}, \operatorname{rank}(\mathbf{A})$ is the number of nonzero eigenvalues.

Matrix Norms

The definition of a matrix norm is equivalent to that of a vector norm.

Specifically, a matrix norm is a function $\|\|:. \mathbb{C}^{m \times n} \rightarrow \mathbb{R}$ that satisfies the following properties:

1. $\|\mathbf{X}\| \geq 0$ for all $\mathbf{X} \in \mathbb{C}^{m \times n}$
2. $\|\mathbf{X}\|=0$ if and only if $\mathbf{X}=\mathbf{0}$
3. $\|\mathbf{X}+\mathbf{Y}\| \leq\|\mathbf{X}\|+\|\mathbf{Y}\|$ for any $\mathbf{X}, \mathbf{Y} \in \mathbb{C}^{m \times n}$
4. $\|c \mathbf{X}\|=|c|\|\mathbf{X}\|$ for $c \in \mathbb{C}, \mathbf{X} \in \mathbb{C}^{m \times n}$

Frobenius Norm:

$$
\|\mathbf{A}\|_{F}^{2}=\left[\sum_{i=1}^{m} \sum_{k=1}^{n}\left|a_{i k}\right|^{2}\right]^{1 / 2}
$$

Note that

$$
\|\mathbf{A}\|_{F}^{2}=\left[\operatorname{tr}\left(\mathbf{A}^{H} \mathbf{A}\right)\right]^{1 / 2}
$$

Matrix p-Norms:

$$
\begin{aligned}
\|\mathbf{A}\|_{p}^{2} & =\sup _{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A} \mathbf{x}\|_{p}}{\|\mathbf{x}\|_{p}} \\
& =\max _{\|\mathbf{x}\|_{p}=1}\|\mathbf{A} \mathbf{x}\|_{p}
\end{aligned}
$$

For the matrix 2-norm,

$$
\|\mathbf{A}\|_{2}=\sqrt{\lambda_{\max }}
$$

where $\lambda_{\text {max }}$ is the largest eigenvalue of $\mathbf{A}^{H} \mathbf{A}$.
As we will see later in this course, $\|\mathbf{A}\|_{2}$ is also the largest singular value of \mathbf{A}.

Some useful inequalities:

1. $\|\mathbf{A} \mathbf{x}\|_{p} \leq\|\mathbf{A}\|_{p}\|\mathbf{x}\|_{p}$
2. Let \mathbf{Q} and \mathbf{Z} be unitary matrices of appropriate sizes.

$$
\begin{aligned}
\|\mathbf{Q A Z}\|_{2} & =\|\mathbf{A}\|_{2} \\
\|\mathbf{Q A Z}\|_{F} & =\|\mathbf{A}\|_{F}
\end{aligned}
$$

3. $\|\mathbf{A B}\|_{p} \leq\|\mathbf{A}\|_{p}\|\mathbf{B}\|_{p}$
