COM521500
 Math. Methods for SP |
 Lecture 11: Matrix Equations and the Kronecker Product

Motivation

In this lecture we study several linear operators, namely the Kronecker product, the vectorization, and the Kronecker sum.

They are very useful in solving seemingly hard matrix eqns., such as solving

$$
\mathbf{X A}+\mathbf{A}^{H} \mathbf{X}=\mathbf{H}
$$

for \mathbf{X} given \mathbf{A} and \mathbf{H}.

Kronecker Product

The Kronecker product of two matrices \mathbf{A} and \mathbf{B} are defined to be

$$
\mathbf{A} \otimes \mathbf{B}=\left[\begin{array}{cccc}
a_{11} \mathbf{B} & a_{12} \mathbf{B} & \ldots & a_{1 n} \mathbf{B} \\
a_{21} \mathbf{B} & a_{22} \mathbf{B} & & a_{2 n} \mathbf{B} \\
\vdots & & \ddots & \vdots \\
a_{m 1} \mathbf{B} & a_{m 2} \mathbf{B} & \ldots & a_{m n} \mathbf{B}
\end{array}\right]
$$

Some elementary properties for the Kronecker product:

1. $\mathbf{A} \otimes(\alpha \mathbf{B})=\alpha \mathbf{A} \otimes \mathbf{B}$.
2. (distributive)

$$
\begin{aligned}
& (\mathbf{A}+\mathbf{B}) \otimes \mathbf{C}=\mathbf{A} \otimes \mathbf{C}+\mathbf{B} \otimes \mathbf{C} \\
& \mathbf{A} \otimes(\mathbf{B}+\mathbf{C})=\mathbf{A} \otimes \mathbf{B}+\mathbf{A} \otimes \mathbf{C}
\end{aligned}
$$

3. (associative) $\mathbf{A} \otimes(\mathbf{B} \otimes \mathbf{C})=(\mathbf{A} \otimes \mathbf{B}) \otimes \mathbf{C}$.
4. $\mathbf{0}_{m n}=\mathbf{0}_{m} \otimes \mathbf{0}_{n}, \mathbf{I}_{m n}=\mathbf{I}_{m} \otimes \mathbf{I}_{n}$.
5. $(\mathbf{A} \otimes \mathbf{B})^{T}=\mathbf{A}^{T} \otimes \mathbf{B}^{T},(\mathbf{A} \otimes \mathbf{B})^{H}=\mathbf{A}^{H} \otimes \mathbf{B}^{H}$.
6. (mixed product rule)

$$
(\mathbf{A} \otimes \mathbf{B})(\mathbf{C} \otimes \mathbf{D})=(\mathbf{A C}) \otimes(\mathbf{B D})
$$

for A, B, C, D of appropriate matrix dimensions.
7. Suppose that $\mathbf{A} \in \mathbb{C}^{m \times m}$ and $\mathbf{B} \in \mathbb{C}^{n \times n}$ are nonsingular.

$$
(\mathbf{A} \otimes \mathbf{B})^{-1}=\mathbf{A}^{-1} \otimes \mathbf{B}^{-1}
$$

Property 7 can be shown using Property 6:

$$
\begin{aligned}
\left(\mathbf{A}^{-1} \otimes \mathbf{B}^{-1}\right)(\mathbf{A} \otimes \mathbf{B}) & =\left(\mathbf{A}^{-1} \mathbf{A}\right) \otimes\left(\mathbf{B}^{-1} \mathbf{B}\right) \\
& =\mathbf{I}_{m} \otimes \mathbf{I}_{n}=\mathbf{I}_{m n}
\end{aligned}
$$

The Kronecker product is not commutative in general; i.e., $\mathbf{A} \otimes \mathbf{B}=\mathbf{B} \otimes \mathbf{A}$ is not true except for special cases such as $\mathbf{A}=a \& \mathbf{B}=b$. However,
8. There exist permutation matrices \mathbf{U}_{1} and \mathbf{U}_{2} such that

$$
\mathbf{U}_{1}(\mathbf{A} \otimes \mathbf{B}) \mathbf{U}_{2}=\mathbf{B} \otimes \mathbf{A}
$$

There is a straightforward correspondence between the eigen-eqns. of $\mathbf{A} \otimes \mathbf{B}$ and \mathbf{A}, \mathbf{B}.

Theorem 11.1 Let $\mathbf{A} \in \mathbb{C}^{m \times m}$, \& $\mathbf{B} \in \mathbb{C}^{n \times n}$. Let $\left\{\lambda_{i}, \mathbf{x}_{i}\right\}_{i=1}^{m}$ be the set of m eigen-pairs of \mathbf{A}, and $\left\{\mu_{i}, \mathbf{y}_{i}\right\}_{i=1}^{n}$ be the set of n eigen-pairs of \mathbf{B}. The set of $m n$ eigen-pairs of $\mathbf{A} \otimes \mathbf{B}$ is given by

$$
\left\{\lambda_{i} \mu_{j}, \mathbf{x}_{i} \otimes \mathbf{y}_{j}\right\}_{i=1, \ldots, m, j=1, \ldots, n}
$$

From Theorem 11.1 it follows that
9. $\operatorname{det}(\mathbf{A} \otimes \mathbf{B})=[\operatorname{det}(\mathbf{A})]^{n}[\operatorname{det}(\mathbf{B})]^{m}$.
10. $\operatorname{tr}\{\mathbf{A} \otimes \mathbf{B}\}=\operatorname{tr}\{\mathbf{A}\} \operatorname{tr}\{\mathbf{B}\}$.
11. If $\mathbf{A} \& \mathbf{B}$ are (Hermitian) $P S D$, then $\mathbf{A} \otimes \mathbf{B}$ is PSD.

Example: Hadamard Matrix

Let

$$
\mathbf{H}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

This matrix is orthogonal.

We can construct a 4×4 matrix by

$$
\begin{aligned}
\mathbf{H}_{4} & =\mathbf{H}_{2} \otimes \mathbf{H}_{2} \\
& =\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
\end{aligned}
$$

Is \mathbf{H}_{4} orthogonal? Yes, because
$\mathbf{H}_{4} \mathbf{H}_{4}^{T}=\left(\mathbf{H}_{2} \otimes \mathbf{H}_{2}\right)\left(\mathbf{H}_{2}^{T} \otimes \mathbf{H}_{2}^{T}\right)=\left(\mathbf{H}_{2} \mathbf{H}_{2}^{T} \otimes \mathbf{H}_{2} \mathbf{H}_{2}^{T}\right)=\mathbf{I}$.
We can obtain \mathbf{H}_{n} for any even n in a similar way.

Vectorization

Let $\mathbf{A}=\left[\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right]$.

$$
\operatorname{vec}(\mathbf{A})=\left[\begin{array}{c}
\mathbf{a}_{1} \\
\mathbf{a}_{2} \\
\vdots \\
\mathbf{a}_{n}
\end{array}\right]
$$

The vectorization operation stacks the columns of a matrix to form a column vector.

An important property:

$$
\operatorname{vec}(\mathbf{A X B})=\left(\mathbf{B}^{T} \otimes \mathbf{A}\right) \operatorname{vec}(\mathbf{X})
$$

Special cases of this property are

$$
\begin{aligned}
\operatorname{vec}(\mathbf{A X}) & =(\mathbf{I} \otimes \mathbf{A}) \operatorname{vec}(\mathbf{X}) \\
\operatorname{vec}(\mathbf{X A}) & =\left(\mathbf{A}^{T} \otimes \mathbf{I}\right) \operatorname{vec}(\mathbf{X})
\end{aligned}
$$

Example: Space-Time Block Coding

Let $M \& N$ be no. of tx and rx antennas. Let T be the code length.

Signal model:

$$
\mathbf{Y}=\mathbf{H C}(\mathbf{s})+\mathbf{V}
$$

where

$\mathbf{Y} \in \mathbb{C}^{M \times T}$	received code matrix
$\mathbf{H} \in \mathbb{C}^{M \times N}$	channel matrix
$\mathbf{C}(\mathbf{s}) \in \mathbb{C}^{N \times T}$	transmitted space-time block code (STBC)

The tx STBC has a linear dispersion structure

$$
\mathbf{C}(\mathbf{s})=\sum_{k=1}^{K} \mathbf{X}_{k} s_{k}
$$

where $\mathbf{X}_{k} \in \mathbb{C}^{N \times T}$ are its basis matrices.

Our aim is to estimate sfrom \mathbf{Y}.

Vectorizing the signal model yields

$$
\operatorname{vec}(\mathbf{Y})=\left(\mathbf{I}_{T} \otimes \mathbf{H}\right) \operatorname{vec}(\mathbf{C}(\mathbf{s}))+\operatorname{vec}(\mathbf{V})
$$

Moreover,

$$
\begin{aligned}
\operatorname{vec}(\mathbf{C}(\mathbf{s})) & =\sum_{k=1}^{K} \operatorname{vec}\left(\mathbf{X}_{k}\right) s_{k} \\
& =\underbrace{\left[\operatorname{vec}\left(\mathbf{X}_{1}\right), \ldots, \operatorname{vec}\left(\mathbf{X}_{K}\right)\right]}_{\mathcal{X}} \mathbf{s}
\end{aligned}
$$

Hence, we obtain a familiar linear LS model:

$$
\operatorname{vec}(\mathbf{Y})=\left(\mathbf{I}_{T} \otimes \mathbf{H}\right) \mathcal{X}_{\mathbf{s}}+\operatorname{vec}(\mathbf{V})
$$

which allows us to use LS to estimate s.

Kronecker Sum

The Kronecker sum is motivated by the necessity of solving this problem

$$
\begin{gathered}
\mathbf{A X}+\mathbf{X B}=\mathbf{C} \\
\text { where } \mathbf{A} \in \mathbb{C}^{n \times n}, \mathbf{B} \in \mathbb{C}^{m \times m}, \& \mathbf{C}, \mathbf{X} \in \mathbb{C}^{n \times m}
\end{gathered}
$$

By applying vectorization,

$$
\left(\mathbf{I}_{m} \otimes \mathbf{A}\right) \operatorname{vec}(\mathbf{X})+\left(\mathbf{B}^{T} \otimes \mathbf{I}_{n}\right) \operatorname{vec}(\mathbf{X})=\operatorname{vec}(\mathbf{C})
$$

The Kronecker sum for two square matrices $\mathbf{A} \in \mathbb{C}^{n \times n}$, $\mathbf{B} \in \mathbb{C}^{m \times m}$ are defined to be

$$
\mathbf{A} \oplus \mathbf{B}=\left(\mathbf{I}_{m} \otimes \mathbf{A}\right)+\left(\mathbf{B} \otimes \mathbf{I}_{n}\right)
$$

Theorem 11.2 Let $\left\{\lambda_{i}, \mathbf{x}_{i}\right\}_{i=1}^{n}$ be the set of m eigen-pairs of \mathbf{A}, and $\left\{\mu_{i}, \mathbf{y}_{i}\right\}_{i=1}^{m}$ be the set of n eigen-pairs of \mathbf{B}. The set of $m n$ eigen-pairs of $\mathbf{A} \otimes \mathbf{B}$ is given by

$$
\left\{\lambda_{i}+\mu_{j}, \mathbf{y}_{j} \otimes \mathbf{x}_{i}\right\}_{i=1, \ldots, n, j=1, \ldots, m}
$$

Theorem 11.3 The matrix equations

$$
\mathbf{A X}+\mathbf{X B}=\mathbf{C}
$$

has a unique solution for every given \mathbf{C} if and only if

$$
\begin{equation*}
\lambda_{i} \neq-\mu_{j} \tag{*}
\end{equation*}
$$

for all i, j.
The idea of this theorem is as follows: If $(*)$ can be satisfied, then from Theorem 11.2 there exist a zero eigenvalue implying $\mathbf{A} \oplus \mathbf{B}^{T}$ is singular.

Consider the special case

$$
\mathbf{A}^{H} \mathbf{X}+\mathbf{X A}=\mathbf{C}
$$

which are known as the Lyapunov equations. From Theorem 11.3, it has a unique solution if

$$
\lambda_{i} \neq-\lambda_{j}^{*}
$$

for all i, j.
If \mathbf{A} is PD such that λ_{i} are real and +ve , then the Lyapunov equations always have a unique solution.

