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Motivation

In this lecture we study several linear operators, namely the

Kronecker product, the vectorization, and the

Kronecker sum.

They are very useful in solving seemingly hard matrix eqns.,

such as solving

XA + AHX = H

for X given A and H.
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Kronecker Product

The Kronecker product of two matrices A and B are

defined to be

A⊗B =




a11B a12B . . . a1nB

a21B a22B a2nB
...

. . .
...

am1B am2B . . . amnB



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Some elementary properties for the Kronecker product:

1. A⊗ (αB) = αA⊗B.

2. (distributive)

(A + B)⊗C = A⊗C + B⊗C

A⊗ (B + C) = A⊗B + A⊗C

3. (associative) A⊗ (B⊗C) = (A⊗B)⊗C.

4. 0mn = 0m ⊗ 0n, Imn = Im ⊗ In.

5. (A⊗B)T = AT ⊗BT , (A⊗B)H = AH ⊗BH .
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6. (mixed product rule)

(A⊗B)(C⊗D) = (AC)⊗ (BD)

for A, B, C, D of appropriate matrix dimensions.

7. Suppose that A ∈ Cm×m and B ∈ Cn×n are

nonsingular.

(A⊗B)−1 = A−1 ⊗B−1

Property 7 can be shown using Property 6:

(A−1 ⊗B−1)(A⊗B) = (A−1A)⊗ (B−1B)

= Im ⊗ In = Imn
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The Kronecker product is not commutative in general; i.e.,

A⊗B = B⊗A is not true except for special cases such as

A = a & B = b. However,

8. There exist permutation matrices U1 and U2 such that

U1(A⊗B)U2 = B⊗A
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There is a straightforward correspondence between the

eigen-eqns. of A⊗B and A, B.

Theorem 11.1 Let A ∈ Cm×m, & B ∈ Cn×n. Let

{λi,xi}m
i=1 be the set of m eigen-pairs of A, and {µi,yi}n

i=1

be the set of n eigen-pairs of B. The set of mn eigen-pairs

of A⊗B is given by

{λiµj,xi ⊗ yj}i=1,...,m, j=1,...,n
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From Theorem 11.1 it follows that

9. det(A⊗B) = [det(A)]n[det(B)]m.

10. tr{A⊗B} = tr{A}tr{B}.
11. If A & B are (Hermitian) PSD, then A⊗B is PSD.
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Example: Hadamard Matrix

Let

H2 =
1√
2


1 1

1 −1




This matrix is orthogonal.
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We can construct a 4× 4 matrix by

H4 = H2 ⊗H2

=
1

2




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1




Is H4 orthogonal? Yes, because

H4H
T
4 = (H2 ⊗H2)(H

T
2 ⊗HT

2 ) = (H2H
T
2 ⊗H2H

T
2 ) = I.

We can obtain Hn for any even n in a similar way.
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Vectorization

Let A = [ a1, . . . , an ].

vec(A) =




a1

a2

...

an




The vectorization operation stacks the columns of a matrix

to form a column vector.
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An important property:

vec(AXB) = (BT ⊗A)vec(X)

Special cases of this property are

vec(AX) = (I⊗A)vec(X)

vec(XA) = (AT ⊗ I)vec(X)
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Example: Space-Time Block Coding

Let M & N be no. of tx and rx antennas. Let T be the

code length.

Signal model:

Y = HC(s) + V

where

Y ∈ CM×T received code matrix

H ∈ CM×N channel matrix

C(s) ∈ CN×T transmitted space-time block code (STBC)
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The tx STBC has a linear dispersion structure

C(s) =
K∑

k=1

Xksk

where Xk ∈ CN×T are its basis matrices.

Our aim is to estimate s from Y.
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Vectorizing the signal model yields

vec(Y) = (IT ⊗H)vec(C(s)) + vec(V)

Moreover,

vec(C(s)) =
K∑

k=1

vec(Xk)sk

= [ vec(X1), . . . , vec(XK) ]︸ ︷︷ ︸
X

s

Hence, we obtain a familiar linear LS model:

vec(Y) = (IT ⊗H)X s + vec(V)

which allows us to use LS to estimate s.
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Kronecker Sum

The Kronecker sum is motivated by the necessity of solving

this problem

AX + XB = C

where A ∈ Cn×n, B ∈ Cm×m, & C,X ∈ Cn×m.

By applying vectorization,

(Im ⊗A)vec(X) + (BT ⊗ In)vec(X) = vec(C)
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The Kronecker sum for two square matrices A ∈ Cn×n,

B ∈ Cm×m are defined to be

A⊕B = (Im ⊗A) + (B⊗ In)

Theorem 11.2 Let {λi,xi}n
i=1 be the set of m eigen-pairs

of A, and {µi,yi}m
i=1 be the set of n eigen-pairs of B. The

set of mn eigen-pairs of A⊗B is given by

{λi + µj,yj ⊗ xi}i=1,...,n, j=1,...,m
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Theorem 11.3 The matrix equations

AX + XB = C

has a unique solution for every given C if and only if

λi 6= −µj (∗)

for all i, j.

The idea of this theorem is as follows: If (∗) can be

satisfied, then from Theorem 11.2 there exist a zero

eigenvalue implying A⊕BT is singular.
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Consider the special case

AHX + XA = C

which are known as the Lyapunov equations. From Theorem

11.3, it has a unique solution if

λi 6= −λ∗j

for all i, j.

If A is PD such that λi are real and +ve, then the

Lyapunov equations always have a unique solution.
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