COM521500

Math. Methods for SP I
Lecture 10: Toeplitz Matrices and Linear Prediction

Institute Comm. Eng. \& Dept. Elect. Eng., National Tsing Hua University

Toeplitz Matrices

A matrix of the form

$$
\mathbf{R}=\left[\begin{array}{ccccc}
r_{0} & r_{-1} & \ldots & \ldots & r_{-K} \\
r_{1} & r_{0} & r_{-1} & & \vdots \\
\vdots & r_{1} & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \ddots & r_{-1} \\
r_{K} & \ldots & \ldots & r_{1} & r_{0}
\end{array}\right]
$$

is called a Toeplitz matrix.

Linear Prediction

Signal model for an AR process:

$$
x[n]=\sum_{i=1}^{K} h_{i} x[n-i]+w[n]
$$

where $\left\{h_{i}\right\}$ is the set of AR coefficients, and $w[n]$ is a time-uncorrelated WSS process.

We assume that the signals are real valued.

Minimum-mean-squared-error (MMSE) estimation

$$
\mathbf{h}_{\text {opt }}=\arg \min _{\mathbf{h} \in \mathbb{R}^{K}} \mathrm{E}\left\{\left(x[n]-\sum_{i=1}^{K} h_{i} x[n-i]\right)^{2}\right\}
$$

Let $f(\mathbf{h})=\mathrm{E}\left\{\left(x[n]-\sum_{i=1}^{K} h_{i} x[n-i]\right)^{2}\right\}$. Then,

$$
f(\mathbf{h})=r_{0}-2 \sum_{i=1}^{K} h_{i} r_{-i}+\sum_{i=1}^{K} \sum_{k=1}^{K} h_{i} h_{k} r_{k-i}
$$

where $r_{i}=\mathrm{E}\{x[n+i] x[n]\}$ is the auto-correlation sequence of $x[n]$.

Using the symmetry of auto-correlation sequences (i.e., $r_{i}=r_{-i}$), the objective function f can be written as

$$
f(\mathbf{h})=r_{0}-2 \mathbf{r}_{p}^{T} \mathbf{h}+\mathbf{h}^{T} \mathbf{R h}
$$

where

$$
\mathbf{r}_{p}=\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{K}
\end{array}\right], \quad \mathbf{R}=\left[\begin{array}{cccc}
r_{0} & r_{-1} & \ldots & r_{-K+1} \\
r_{1} & \ddots & \ddots & \\
\vdots & \ddots & \ddots & r_{-1} \\
r_{K-1} & & r_{1} & r_{0}
\end{array}\right]
$$

As a correlation matrix, \mathbf{R} is symmetric and PSD.
Assume that \mathbf{R} is also PD , for simplicity.
By finding the gradient of f, the solution $\mathbf{h}_{\text {opt }}$ is obtained as

$$
\begin{equation*}
\mathbf{h}_{\text {opt }}=\mathbf{R}^{-1} \mathbf{r}_{p} \tag{*}
\end{equation*}
$$

$(*)$ is known as the Wiener-Hopf equations.

LS: an alternative to AR coefficient estimation

By letting $\mathbf{x}[n]=[x[n-1], x[n-2], \ldots, x[n-K]]^{T}$, and

$$
\mathbf{x}_{p}=\left[\begin{array}{c}
x[K] \\
\vdots \\
x[N]
\end{array}\right], \quad \mathbf{X}=\left[\begin{array}{c}
\mathbf{x}^{T}[K] \\
\vdots \\
\mathbf{x}^{T}[N]
\end{array}\right],
$$

where N is the data length, the AR signal model can be written in a matrix form

$$
\mathbf{x}_{p}=\mathbf{X h}+\mathbf{w}
$$

LS solution to h :

$$
\mathbf{h}_{L S}=\arg \min _{\mathbf{h} \in \mathbb{R}^{K}}\left\|\mathbf{x}_{p}-\mathbf{X h}\right\|_{2}^{2}
$$

Using the LS concepts, we obtain

$$
\mathbf{h}_{L S}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{x}_{p}
$$

Note that a mild assumption of nonsingular $\mathbf{X}^{T} \mathbf{X}$ has been made.

Relationship of MMSE estimation and LS

By noting that

$$
\mathbf{X}=\left[\begin{array}{cccc}
x[0] & x[1] & \ldots & x[K-1] \\
x[1] & x[2] & \ldots & x[K] \\
\vdots & & & \vdots \\
x[N-K] & \ldots & \ldots & x[N-1]
\end{array}\right]
$$

the following properties are obtained:

$$
\lim _{N \rightarrow \infty} \mathbf{X}^{T} \mathbf{X}=\mathbf{R}, \quad \lim _{N \rightarrow \infty} \mathbf{X}^{T} \mathbf{x}_{p}=\mathbf{r}_{p}
$$

Hence, the LS method approaches the MMSE estimation method when the data length N is sufficiently large.

Forward/Backward Prediction-Error Eqns.

We focus on the MMSE estimation framework, instead of LS.

The MMSE is

$$
\begin{aligned}
\sigma^{2} & =f\left(\mathbf{h}_{o p t}\right) \\
& =r_{0}-\mathbf{r}_{p}^{T} \mathbf{h}_{o p t} \\
& =\left[r_{0}, r_{1}, \ldots, r_{K}\right]\left[\begin{array}{c}
1 \\
-\mathbf{h}_{o p t}
\end{array}\right]
\end{aligned}
$$

On the other hand, the Wiener-Hopf eqns. can be reorganized as

$$
\left[\begin{array}{ll}
\mathbf{r}_{p} & \mathbf{R}
\end{array}\right]\left[\begin{array}{c}
1 \\
-\mathbf{h}_{o p t}
\end{array}\right]=\mathbf{0}
$$

By augmenting the MMSE to the above eqn., we obtain

$$
\underbrace{\left[\begin{array}{cccc}
r_{0} & r_{-1} & \ldots & r_{-K+1} \\
r_{1} & \ddots & \ddots & \\
\vdots & \ddots & \ddots & r_{-1} \\
r_{K-1} & & r_{1} & r_{0}
\end{array}\right]}_{\mathbf{R}_{K}}\left[\begin{array}{c}
1 \\
-h_{1} \\
\vdots \\
-h_{K}
\end{array}\right]=\left[\begin{array}{c}
\sigma^{2} \\
0 \\
\vdots \\
0
\end{array}\right]
$$

These are called the forward prediction error eqns.

Exploiting the symmetric and Toeplitz properties of \mathbf{R}_{K}, we obtain, from the forward prediction eqns.,

$$
\left[\begin{array}{cccc}
r_{0} & r_{-1} & \ldots & r_{-K+1} \\
r_{1} & \ddots & \ddots & \\
\vdots & \ddots & \ddots & r_{-1} \\
r_{K-1} & & r_{1} & r_{0}
\end{array}\right]\left[\begin{array}{c}
-h_{K} \\
\vdots \\
-h_{1} \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
\sigma^{2}
\end{array}\right]
$$

These are called the backward prediction error eqns.

Levinson-Durbin Recursion (LDR)

Suppose that we have a $(m-1)$ th order AR solution

$$
\left[\begin{array}{ccc}
r_{0} & \cdots & r_{-m+1} \\
\vdots & \ddots & \vdots \\
r_{m-1} & \cdots & r_{0}
\end{array}\right]\left[\begin{array}{c}
1 \\
-\mathbf{h}^{(m-1)}
\end{array}\right]=\left[\begin{array}{c}
\sigma_{(m-1)}^{2} \\
\mathbf{0}
\end{array}\right]
$$

where $\mathbf{h}^{(m-1)} \in \mathbb{R}^{(m-1)}$.
We seek to find ways of obtaining m th order AR solution from the $(m-1)$ th.

LDR is shown by construction. We suppose that

$$
\left[\begin{array}{c}
1 \\
-h_{1}^{(m)} \\
\vdots \\
-h_{m-1}^{(m)} \\
-h_{m}^{(m)}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-h_{1}^{(m-1)} \\
\vdots \\
-h_{m-1}^{(m-1)} \\
0
\end{array}\right]+\rho_{m}\left[\begin{array}{c}
0 \\
-h_{m-1}^{(m-1)} \\
\vdots \\
-h_{1}^{(m-1)} \\
1
\end{array}\right]
$$

for some coefficient ρ_{m}.
The coefficients ρ_{m} are known as the partial correlation coefficients (PARCOR).

Forward prediction:

$$
\left.\begin{array}{rl}
\mathbf{R}_{m}\left[\begin{array}{c}
1 \\
-h_{1}^{(m-1)} \\
\vdots \\
-h_{m-1}^{(m-1)} \\
0
\end{array}\right] & =\left[\begin{array}{ccc}
& & r_{-m} \\
& \mathbf{R}_{m-1} & \\
& & r_{-1} \\
r_{m} & \cdots & r_{1}
\end{array} r_{0}\right.
\end{array}\right]\left[\begin{array}{c}
1 \\
-h_{1}^{(m-1)} \\
\vdots \\
-h_{m-1}^{(m-1)} \\
0
\end{array}\right] .
$$

where $\Delta^{(m-1)}=r_{m}-\sum_{i=m-1}^{1} r_{i} h_{m-i}^{(m-1)}$.

Backward prediction:

$$
\begin{aligned}
{\left[\begin{array}{c}
0 \\
\mathbf{R}_{m}\left[\begin{array}{c}
(m-1) \\
\vdots \\
-h_{1}^{(m-1)} \\
1
\end{array}\right]
\end{array}\right] } & {\left[\begin{array}{cccc}
r_{0} & r_{-1} & \ldots & r_{-m} \\
r_{1} & & & \\
\vdots & & \mathbf{R}_{m-1} & \\
r_{m} & &
\end{array}\right]\left[\begin{array}{c}
0 \\
-h_{m}^{(m-1)} \\
\vdots \\
-h_{1}^{(m-1)} \\
1
\end{array}\right] } \\
& =\left[\begin{array}{c}
\Delta^{(m-1)} \\
0 \\
\sigma_{(m-1)}^{2}
\end{array}\right]
\end{aligned}
$$

Combining the equations of forward and backward predictions,

$$
\left[\begin{array}{c}
\sigma_{(m-1)}^{2} \\
\mathbf{0} \\
\Delta^{(m-1)}
\end{array}\right]+\rho_{m}\left[\begin{array}{c}
\Delta^{(m-1)} \\
\mathbf{0} \\
\sigma_{(m-1)}^{2}
\end{array}\right]=\left[\begin{array}{c}
\sigma_{(m)}^{2} \\
\mathbf{0} \\
0
\end{array}\right]
$$

Hence, the solution to ρ_{m} is

$$
\rho_{m}=-\Delta^{(m-1)} / \sigma_{(m-1)}^{2}
$$

and

$$
\sigma_{(m)}^{2}=\sigma_{(m-1)}^{2}\left(1-\rho_{m}^{2}\right)
$$

LDR algorithm:

1. Set $m=1, \Delta^{(0)}=r_{1}, \mathbf{h}^{(0)}=\{ \}$ and $\sigma_{(0)}^{2}=r_{0}$.
2. From $\Delta^{(m-1)}, \sigma_{(m-1)}^{2}$ compute $\rho_{m}, \mathbf{h}^{(m)}, \sigma_{(m)}^{2}$, and $\Delta^{(m)}$.
3. If $m<K$, increment m and repeat Step 2 .

The FLOPS of LDR is K^{2}, which is lower than the $K^{3} / 3$ FLOPS required by using Cholesky decomposition to find $\mathbf{h}_{\text {opt }}$.

Toeplitz Factorizations

Note that we still assume \mathbf{R}_{K} to be symmetric PD.
From the forward prediction-error eqns.,

$$
\mathbf{R}_{m}\left[\begin{array}{c}
1 \\
-\mathbf{h}^{(m)}
\end{array}\right]=\left[\begin{array}{c}
\sigma_{(m)}^{2} \\
\mathbf{0}_{m}
\end{array}\right]
$$

Hence,

$$
\mathbf{R}_{K}\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
-\mathbf{h}^{(m)}
\end{array}\right]=\left[\begin{array}{c}
\times \\
\vdots \\
\times \\
\sigma_{(m)}^{2} \\
\mathbf{0}_{m}
\end{array}\right]
$$

Subsequently

$$
\mathbf{R}_{K} \underbrace{\left[\begin{array}{cccc}
1 & & & \\
-h_{1}^{(K)} & 1 & & \\
-h_{2}^{(K)} & -h_{1}^{(K-1)} & & \\
\vdots & \vdots & \ddots & \\
-h_{K}^{(K)} & -h_{K-1)}^{(K-1)} & & 1
\end{array}\right]}_{\mathbf{A}}=\underbrace{\left[\begin{array}{cccc}
\sigma_{(K)}^{2} & \times & \ldots & \times \\
& \sigma_{(K-1)}^{2} & & \times \\
& & \ddots & \vdots \\
& & & \sigma_{(0)}^{2}
\end{array}\right]}_{\mathbf{U}}
$$

Consider $\mathbf{A}^{T} \mathbf{R}_{K} \mathbf{A}$.
$\mathbf{A}^{T} \mathbf{R}_{K} \mathbf{A}$ is symmetric as long as \mathbf{R}_{K} is symmetric.
On the other hand, $\mathbf{A}^{T} \mathbf{R}_{K} \mathbf{A}=\mathbf{A}^{T} \mathbf{U}$ is a multiplication of two upper triangular matrices, which is upper triangular.

As a consequence, $\mathbf{A}^{T} \mathbf{R}_{K} \mathbf{A}$ is diagonal:

$$
\mathbf{A}^{T} \mathbf{R}_{K} \mathbf{A}=\mathbf{D}
$$

where

$$
\mathbf{D}=\operatorname{Diag}\left(\sigma_{(K)}^{2}, \ldots, \sigma_{(0)}^{2}\right)
$$

Let $\mathbf{B}=\mathbf{A D}^{-1 / 2}$. We have that

$$
\mathbf{B}^{T} \mathbf{R}_{K} \mathbf{B}=\mathbf{I}
$$

or

$$
\mathbf{R}_{K}=\mathbf{B}^{-T} \mathbf{B}^{-1}
$$

which means \mathbf{B}^{T} is the inverse Cholesky factor of \mathbf{R}_{K}.

Determinants and PARCOR

From the Toeplitz factorization, $\mathbf{R}_{K}=\mathbf{A}^{-T} \mathbf{D A}^{-1}$. \mathbf{A} is lower triangular with unit diagonals, and hence \mathbf{A}^{-1} shares the same property. Subsequently,

$$
\begin{aligned}
\operatorname{det}\left(\mathbf{R}_{K}\right) & =\operatorname{det}\left(\mathbf{A}^{-T}\right) \operatorname{det}(\mathbf{D}) \operatorname{det}(\mathbf{A}) \\
& =\operatorname{det}(\mathbf{D})=\prod_{m=1}^{K} \sigma_{(m)}^{2}
\end{aligned}
$$

where we recall $\sigma_{(m)}^{2}=r_{0} \prod_{i=1}^{m}\left(1-\rho_{m}^{2}\right)$.
Since \mathbf{R}_{K} is PD , it must be true that $\left|\rho_{m}\right|<1$ for all m.

Lattice Filter

Let

$$
H^{(m)}(z)=\left[\begin{array}{lll}
1 & -h_{1}^{(m)} \ldots-h_{m}^{(m)}
\end{array}\right]\left[\begin{array}{c}
1 \\
z^{-1} \\
\vdots \\
z^{-m}
\end{array}\right]
$$

and

$$
G^{(m)}(z)=\left[-h_{m}^{(m)} \ldots-h_{1}^{(m)} 1\right]\left[\begin{array}{c}
1 \\
z^{-1} \\
\vdots \\
z^{-m}
\end{array}\right]
$$

Our objective is to implement $H^{(K)}(z)$, the linear prediction filter. From

$$
\left[\begin{array}{c}
1 \\
-h_{1}^{(m)} \\
\vdots \\
-h_{m-1}^{(m)} \\
-h_{m-1}^{(m)}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-h_{1}^{(m-1)} \\
\vdots \\
-h_{m-1}^{(m-1)} \\
0
\end{array}\right]+\rho_{m}\left[\begin{array}{c}
0 \\
-h_{m}^{(m-1)} \\
\vdots \\
-h_{1}^{(m-1)} \\
1
\end{array}\right],
$$

we obtain

$$
H^{(m)}(z)=H^{(m-1)}(z)+\rho_{m} z^{-1} G^{(m-1)}(z)
$$

Consider the backward version of the previous prediction eqns.:

$$
\left[\begin{array}{c}
-h_{m}^{(m)} \\
\vdots \\
-h_{2}^{(m)} \\
-h_{m}^{(1)} \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
-h_{m-1}^{(m-1)} \\
\vdots \\
-h_{1}^{(m-1)} \\
1
\end{array}\right]+\rho_{m}\left[\begin{array}{c}
1 \\
-h_{1}^{(m-1)} \\
\vdots \\
-h_{m-1}^{(m-1)} \\
0
\end{array}\right],
$$

The following eqn. is obtained

$$
G^{(m)}(z)=z^{-1} G^{(m-1)}(z)+\rho_{m} H^{(m-1)}(z)
$$

Lattice filter architecture.

