COM521500 Math. Methods for SP I Lecture 1: Basic Concepts

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

COM521500 Mathematical Methods for Signal Processing I

Lecture 1: Basic Concepts

1

Notations

- \mathbb{R} real space, or the set of real numbers
- \mathbb{C} complex space, or the set of complex numbers
- $\mathbb{R}^n, \mathbb{C}^n$ *n*-dimensional real/complex space
- x column vector
- x_i ith entry of **x**
- A matrix
- a_{ik} (i,k)th entry of **A**

- $(.)^T$ transpose
- (.)* conjugate
- $(.)^H$ Hermitian transpose; i.e., conjugate plus transpose
- tr(.) the trace; i.e.; tr(A) = $\sum_{i=1}^{n} a_{ii}$ where A $\in \mathbb{C}^{n \times n}$ (or A $\in \mathbb{R}^{n \times n}$)

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

COM521500 Mathematical Methods for Signal Processing I

Lecture 1: Basic Concepts

3

Some Concepts about Subspaces

Linear Independence:

A set of n vectors $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\} \in \mathbb{R}^m$ is linearly independent if

$$\sum_{i=1}^{n} c_i \mathbf{a}_i = \mathbf{0} \quad \Longleftrightarrow \quad c_1 = c_2 = \ldots = c_n = \mathbf{0}$$

Subspaces:

A subset $S \subseteq \mathbb{R}^m$ is called a subspace when the following properties are satisfied:

- 1. if $\mathbf{x}, \mathbf{y} \in \mathcal{S}$ then $\mathbf{x} + \mathbf{y} \in \mathcal{S}$; and
- 2. if $\mathbf{x} \in S$ and $c \in \mathbb{R}$ then $c\mathbf{x} \in S$.

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

COM521500 Mathematical Methods for Signal Processing I Lecture 1: Basic Concepts

Span:

The span of a set of vectors $\{a_1, \ldots, a_n\}$ is the set of all possible linear combinations of a_1, \ldots, a_n :

span
$$[\mathbf{a}_1, \dots, \mathbf{a}_n] = \left\{ \mathbf{y} \in \mathbb{R}^m \mid \mathbf{y} = \sum_{i=1}^n c_i \mathbf{a}_i, \quad c_i \in \mathbb{R} \right\}$$

 $\operatorname{span}[\mathbf{a}_1,\ldots,\mathbf{a}_n]$ is a subspace.

A **maximal independent set** is a set of vectors which contains the maximum number of independent vectors spanning the space.

A basis for a subspace is any maximally independent set within the subspace.

Orthogonal complement subspace:

The orthogonal complement subspace of a subspace $\ensuremath{\mathcal{S}}$ is defined as

$$S_{\perp} = \left\{ \mathbf{y} \in \mathbb{R}^m \mid \mathbf{y}^T \mathbf{x} = 0 \text{ for all } \mathbf{x} \in S \right\}$$

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

COM521500 Mathematical Methods for Signal Processing I

Lecture 1: Basic Concepts

7

Range space:

The range space of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is defined as

$$R(\mathbf{A}) = \left\{ \mathbf{y} \in \mathbb{R}^m \mid \mathbf{y} = \mathbf{A}\mathbf{x}, \text{ for } \mathbf{x} \in \mathbb{R}^n \right\}$$

Null space: The null space of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is defined as

$$N(\mathbf{A}) = \left\{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} = \mathbf{0} \right\}$$

The **dimension** of a subspace (or the vector space) S, denoted by dim S, is the maximum number of linear independent vectors that spans the subspace.

Some properties:

Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ where $m \ge n$, dim $R(\mathbf{A}) \le n$. Given $\mathbf{A} \in \mathbb{R}^{m \times n}$, dim $R(\mathbf{A}) + \dim N(\mathbf{A}) = n$.

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

COM521500 Mathematical Methods for Signal Processing I

Lecture 1: Basic Concepts

Some Matrix Concepts

A matrix $\mathbf{A} \in \mathbb{R}^{n \times m}$ is **nonsingular** if

$$Ax = 0 \iff x = 0$$

A square matrix $\mathbf{A} \in \mathbb{R}^{m \times m}$ is **invertible** if there exists a matrix \mathbf{A}^{-1} , called the inverse of \mathbf{A} , such that $\mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$.

Determinant:

Consider a square matrix $\mathbf{A} \in \mathbb{R}^{m \times m}$. Define \mathbf{A}_{ij} to be the submatrix obtained from \mathbf{A} by deleting the *i*th row and *j*th column of \mathbf{A} .

The scalar no. $det(\mathbf{A}_{ij})$ is called the **minor** associated with a_{ij} of \mathbf{A} .

The signed minor $c_{ij} = (-1)^{i+j} \det(\mathbf{A}_{ij})$ is called the **cofactor** of a_{ij} .

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

COM521500 Mathematical Methods for Signal Processing I

Lecture 1: Basic Concepts

11

Cofactor expansion:

$$\det(\mathbf{A}) = \sum_{j=1}^{m} a_{ij}c_{ij}, \text{ for any } i = 1, \dots, m$$
$$\det(\mathbf{A}) = \sum_{i=1}^{m} a_{ij}c_{ij}, \text{ for any } j = 1, \dots, m$$

Some properties:

$$det(\mathbf{AB}) = det(\mathbf{A})det(\mathbf{B}), \quad \mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times m}$$
$$det(\mathbf{A}) = det(\mathbf{A}^T)$$
$$det(c\mathbf{A}) = c^m det(\mathbf{A})$$
$$det(\mathbf{A}) = 0 \iff \mathbf{A} \text{ is singular}$$
For a nonsingular \mathbf{A} , $det(\mathbf{A}^{-1}) = det(\mathbf{A})^{-1}$ If $\mathbf{B} \in \mathbb{R}^{m \times m}$ is nonsingular then $det(\mathbf{B}^{-1}\mathbf{AB}) = det(\mathbf{A})$.

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

COM521500 Mathematical Methods for Signal Processing I

Lecture 1: Basic Concepts

13

Inverse

Let

$$\tilde{\mathbf{A}} = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1m} \\ c_{21} & c_{22} & & \vdots \\ \vdots & & \ddots & \\ c_{m1} & & & c_{mm} \end{bmatrix}$$

$$\mathbf{A}^{-1} = [\det(\mathbf{A})]^{-1} \tilde{\mathbf{A}}$$

Rank

The rank of a matrix \mathbf{A} , denoted by $\operatorname{rank}(\mathbf{A})$, is the maximum no. of linearly independent columns of the matrix. It is also the maximum no. of linearly independent rows of the matrix.

From the definition, we have dim $R(\mathbf{A}) = \operatorname{rank}(\mathbf{A})$.

A matrix A is rank deficient if rank(A) < min(m, n); otherwise A is of full rank.

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

COM521500 Mathematical Methods for Signal Processing I

Lecture 1: Basic Concepts

Vector Norms, and Inner Product

A vector norm is a function $\|.\| : \mathbb{R}^n \to \mathbb{R}$ that satisfies the following properties:

- 1. $\|\mathbf{x}\| \ge 0$ for all $\mathbf{x} \in \mathbb{R}^n$
- 2. $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = \mathbf{0}$
- 3. $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$
- 4. $\|c\mathbf{x}\| = |c|\|\mathbf{x}\|$ for $c \in \mathbb{R}$, $\mathbf{x} \in \mathbb{R}^n$

Some examples of vector norms:

The *p*-norms:

$$\|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}, \quad p \ge 1$$

Special cases of the *p*-norms:

The 2-norm:
$$\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$$

The 1-norm: $\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$
The ∞ -norm: $\|\mathbf{x}\|_\infty = \max_{i=1,...,n} |x_i|$

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

COM521500 Mathematical Methods for Signal Processing I

Lecture 1: Basic Concepts

17

The scalar

$$<\mathbf{x}, \mathbf{y}> = \sum_{i=1}^{n} y_i x_i$$

= $\mathbf{y}^T \mathbf{x}$

is an **inner product** of \mathbf{x} and $\mathbf{y} \in \mathbb{R}^n$.

For the matrix case where $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{m imes n}$,

$$\langle \mathbf{X}, \mathbf{Y} \rangle = \sum_{i=1}^{m} \sum_{k=1}^{n} y_{ik} x_{ik}$$

= tr($\mathbf{X}\mathbf{Y}^{T}$)

Some important inequalities:

Cauchy-Schwartz inequality:

$$|\mathbf{x}^T \mathbf{y}| \le \|\mathbf{x}\|_2 \|\mathbf{y}\|_2,$$

and equality holds if and only if $\mathbf{x} = c\mathbf{y}$ for $c \in \mathbb{R}$.

Hölder inequality:

$$|\mathbf{x}^T \mathbf{y}| \le \|\mathbf{x}\|_p \|\mathbf{y}\|_q,$$

where 1/p + 1/q = 1, $p \ge 1$.

Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University

19

COM521500 Mathematical Methods for Signal Processing I Lecture 1: Basic Concepts

Some final remarks:

We have focused on the case of \mathbb{R}^n , for ease of exposition of ideas.

Extensions to the case of \mathbb{C}^n are generally straightforward; i.e., replace ' \mathbb{R} ' by ' \mathbb{C} '. Sometimes the extensions are subject to minor modifications, though.

For example, an inner product for $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$ is

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} x_i y_i^* = \mathbf{y}^H \mathbf{x}$$

Likewise, for a complex-valued subspace $\mathcal{S} \subseteq \mathbb{C}^m$,

$$S_{\perp} = \left\{ \mathbf{y} \in \mathbb{C}^m \mid \mathbf{y}^H \mathbf{x} = 0 \text{ for all } \mathbf{x} \in S \right\}$$