COM521500
 Math. Methods for SP I
 Lecture 1: Basic Concepts

Notations

$\mathbb{R} \quad$ real space, or the set of real numbers
\mathbb{C} complex space, or the set of complex numbers
$\mathbb{R}^{n}, \mathbb{C}^{n} \quad n$-dimensional real/complex space
x column vector
$x_{i} \quad i$ th entry of x
A matrix
$a_{i k} \quad(i, k)$ th entry of \mathbf{A}
$(.)^{T} \quad$ transpose
(.)* conjugate
$(.)^{H} \quad$ Hermitian transpose; i.e., conjugate plus transpose
$\operatorname{tr}($.$) \quad the trace; i.e.; \operatorname{tr}(\mathbf{A})=\sum_{i=1}^{n} a_{i i}$ where $\mathbf{A} \in \mathbb{C}^{n \times n}$ (or $\mathbf{A} \in \mathbb{R}^{n \times n}$)

Some Concepts about Subspaces

Linear Independence:

A set of n vectors $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\} \in \mathbb{R}^{m}$ is linearly independent if

$$
\sum_{i=1}^{n} c_{i} \mathbf{a}_{i}=\mathbf{0} \Longleftrightarrow c_{1}=c_{2}=\ldots=c_{n}=0
$$

Subspaces:

A subset $\mathcal{S} \subseteq \mathbb{R}^{m}$ is called a subspace when the following properties are satisfied:

1. if $\mathbf{x}, \mathrm{y} \in \mathcal{S}$ then $\mathrm{x}+\mathrm{y} \in \mathcal{S}$; and
2. if $\mathbf{x} \in \mathcal{S}$ and $c \in \mathbb{R}$ then $c \mathbf{x} \in \mathcal{S}$.

Span:

The span of a set of vectors $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$ is the set of all possible linear combinations of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$:

$$
\operatorname{span}\left[\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right]=\left\{\mathbf{y} \in \mathbb{R}^{m} \mid \mathbf{y}=\sum_{i=1}^{n} c_{i} \mathbf{a}_{i}, \quad c_{i} \in \mathbb{R}\right\}
$$

$\operatorname{span}\left[\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right]$ is a subspace.

A maximal independent set is a set of vectors which contains the maximum number of independent vectors spanning the space.

A basis for a subspace is any maximally independent set within the subspace.

Orthogonal complement subspace:

The orthogonal complement subspace of a subspace \mathcal{S} is defined as

$$
\mathcal{S}_{\perp}=\left\{\mathrm{y} \in \mathbb{R}^{m} \mid \mathrm{y}^{T} \mathrm{x}=0 \text { for all } \mathrm{x} \in \mathcal{S}\right\}
$$

Range space:

The range space of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is defined as

$$
R(\mathbf{A})=\left\{\mathbf{y} \in \mathbb{R}^{m} \mid \mathbf{y}=\mathbf{A} \mathbf{x}, \text { for } \mathbf{x} \in \mathbb{R}^{n}\right\}
$$

Null space: The null space of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is defined as

$$
N(\mathbf{A})=\left\{\begin{array}{l|l}
\mathrm{x} \in \mathbb{R}^{n} & \mathbf{A} \mathbf{x}=\mathbf{0}
\end{array}\right\}
$$

The dimension of a subspace (or the vector space) \mathcal{S}, denoted by $\operatorname{dim} \mathcal{S}$, is the maximum number of linear independent vectors that spans the subspace.

Some properties:
Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ where $m \geq n, \operatorname{dim} R(\mathbf{A}) \leq n$.
Given $\mathbf{A} \in \mathbb{R}^{m \times n}, \operatorname{dim} R(\mathbf{A})+\operatorname{dim} N(\mathbf{A})=n$.

Some Matrix Concepts

A matrix $\mathbf{A} \in \mathbb{R}^{n \times m}$ is nonsingular if

$$
A x=0 \Longleftrightarrow x=0
$$

A square matrix $\mathbf{A} \in \mathbb{R}^{m \times m}$ is invertible if there exists a matrix \mathbf{A}^{-1}, called the inverse of \mathbf{A}, such that $\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}$.

Determinant:

Consider a square matrix $\mathbf{A} \in \mathbb{R}^{m \times m}$. Define $\mathbf{A}_{i j}$ to be the submatrix obtained from A by deleting the i th row and j th column of \mathbf{A}.

The scalar no. $\operatorname{det}\left(\mathbf{A}_{i j}\right)$ is called the minor associated with $a_{i j}$ of \mathbf{A}.

The signed minor $c_{i j}=(-1)^{i+j} \operatorname{det}\left(\mathbf{A}_{i j}\right)$ is called the cofactor of $a_{i j}$.

Cofactor expansion:

$$
\begin{aligned}
& \operatorname{det}(\mathbf{A})=\sum_{j=1}^{m} a_{i j} c_{i j}, \quad \text { for any } i=1, \ldots, m \\
& \operatorname{det}(\mathbf{A})=\sum_{i=1}^{m} a_{i j} c_{i j}, \quad \text { for any } j=1, \ldots, m
\end{aligned}
$$

Some properties:
$\operatorname{det}(\mathbf{A B})=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B}), \quad \mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times m}$
$\operatorname{det}(\mathbf{A})=\operatorname{det}\left(\mathbf{A}^{T}\right)$
$\operatorname{det}(c \mathbf{A})=c^{m} \operatorname{det}(\mathbf{A})$
$\operatorname{det}(\mathbf{A})=0 \Longleftrightarrow \mathbf{A}$ is singular
For a nonsingular $\mathbf{A}, \operatorname{det}\left(\mathbf{A}^{-1}\right)=\operatorname{det}(\mathbf{A})^{-1}$
If $\mathbf{B} \in \mathbb{R}^{m \times m}$ is nonsingular then $\operatorname{det}\left(\mathbf{B}^{-1} \mathbf{A B}\right)=\operatorname{det}(\mathbf{A})$.

Inverse
Let

$$
\begin{gathered}
\tilde{\mathbf{A}}=\left[\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 m} \\
c_{21} & c_{22} & & \vdots \\
\vdots & & \ddots & \\
c_{m 1} & & & c_{m m}
\end{array}\right] \\
\mathbf{A}^{-1}=[\operatorname{det}(\mathbf{A})]^{-1} \tilde{\mathbf{A}}
\end{gathered}
$$

Rank

The rank of a matrix \mathbf{A}, denoted by $\operatorname{rank}(\mathbf{A})$, is the maximum no. of linearly independent columns of the matrix. It is also the maximum no. of linearly independent rows of the matrix.

From the definition, we have $\operatorname{dim} R(\mathbf{A})=\operatorname{rank}(\mathbf{A})$.
A matrix \mathbf{A} is rank deficient if $\operatorname{rank}(\mathbf{A})<\min (m, n)$; otherwise \mathbf{A} is of full rank.

Vector Norms, and Inner Product

A vector norm is a function $\|\|:. \mathbb{R}^{n} \rightarrow \mathbb{R}$ that satisfies the following properties:

1. $\|\mathrm{x}\| \geq 0$ for all $\mathrm{x} \in \mathbb{R}^{n}$
2. $\|\mathbf{x}\|=0$ if and only if $\mathbf{x}=\mathbf{0}$
3. $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathrm{x}\|+\|\mathrm{y}\|$ for any $\mathrm{x}, \mathrm{y} \in \mathbb{R}^{n}$
4. $\|c \mathbf{x}\|=|c|\|\mathbf{x}\|$ for $c \in \mathbb{R}, \mathbf{x} \in \mathbb{R}^{n}$

Some examples of vector norms:

The p-norms:

$$
\|\mathbf{x}\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}, \quad p \geq 1
$$

Special cases of the p-norms:
The 2-norm: $\|\mathrm{x}\|_{2}=\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}}$
The 1-norm: $\|\mathrm{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
The ∞-norm: $\|\mathbf{x}\|_{\infty}=\max _{i=1, \ldots, n}\left|x_{i}\right|$

The scalar

$$
\begin{aligned}
<\mathbf{x}, \mathbf{y}> & =\sum_{i=1}^{n} y_{i} x_{i} \\
& =\mathbf{y}^{T} \mathbf{x}
\end{aligned}
$$

is an inner product of \mathbf{x} and $\mathbf{y} \in \mathbb{R}^{n}$.
For the matrix case where $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{m \times n}$,

$$
\begin{aligned}
<\mathbf{X}, \mathbf{Y}> & =\sum_{i=1}^{m} \sum_{k=1}^{n} y_{i k} x_{i k} \\
& =\operatorname{tr}\left(\mathbf{X} \mathbf{Y}^{T}\right)
\end{aligned}
$$

Some important inequalities:

Cauchy-Schwartz inequality:

$$
\left|\mathbf{x}^{T} \mathbf{y}\right| \leq\|\mathbf{x}\|_{2}\|\mathbf{y}\|_{2},
$$

and equality holds if and only if $\mathbf{x}=c \mathbf{y}$ for $c \in \mathbb{R}$.
Hölder inequality:

$$
\left|\mathbf{x}^{T} \mathbf{y}\right| \leq\|\mathbf{x}\|_{p}\|\mathbf{y}\|_{q},
$$

where $1 / p+1 / q=1, p \geq 1$.

Some final remarks:

We have focused on the case of \mathbb{R}^{n}, for ease of exposition of ideas.

Extensions to the case of \mathbb{C}^{n} are generally straightforward;
i.e., replace ' \mathbb{R} ' by ' \mathbb{C} '. Sometimes the extensions are subject to minor modifications, though.

For example, an inner product for $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}$ is

$$
<\mathbf{x}, \mathbf{y}>=\sum_{i=1}^{n} x_{i} y_{i}^{*}=\mathbf{y}^{H} \mathbf{x}
$$

Likewise, for a complex-valued subspace $\mathcal{S} \subseteq \mathbb{C}^{m}$,

$$
\mathcal{S}_{\perp}=\left\{\mathbf{y} \in \mathbb{C}^{m} \mid \mathbf{y}^{H} \mathbf{x}=0 \text { for all } \mathbf{x} \in \mathcal{S}\right\}
$$

